Skip to main content
Log in

Influence of preparation conditions on structural and dielectric properties of PVDF–MoS2 nanotubes composite films

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Poly(vinylidene fluoride) composite films with MoS2 nanotubes were prepared from solutions using the doctor blade method and dried under various temperatures. While FTIR-ATR and Raman spectroscopy have revealed that composite films dried at room temperature are homogeneous and crystallize mainly in the γ-phase, a decrease in porosity upon addition of MoS2 has been observed using scanning electron microscopy. Dielectric investigations revealed (i) a decrease from ε’ ∼ 7 in pure polymer to ε’ ∼ 4 in composite with 1 wt% of MoS2, and (ii) a slight increase in ε’ and σ’ values upon further addition of MoS2. Films dried at 110 °C were heterogeneous and FTIR-ATR has shown an increase in α-phase content upon addition of 1 wt% of MoS2. In this case, high values of ε’ ∼ 10 that increased slightly upon increasing amount of MoS2 in the film have been measured. By showing a direct relation between structure and dielectric response, it is suggested that the dielectric properties of poly(vinylidene fluoride)–MoS2 nanotubes composites can be tailored by changing the preparation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lovinger AJ (1983) Ferroelectric polymers. Science 220:1115–1121

    Article  CAS  Google Scholar 

  2. Lovinger AJ (1982) Annealing of poly (vinylidene fluoride) and formation of a fifth phase. Macromolecules 15:40–44

    Article  CAS  Google Scholar 

  3. Martins P, Lopes AC, Lanceros-Mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39:683–706. doi:10.1016/j.progpolymsci.2013.07.006

    Article  CAS  Google Scholar 

  4. Lovinger AJ (1981) Conformational defects and associated molecular motions in crystalline poly(vinylidene fluoride). J Appl Phys 52:5934. doi:10.1063/1.328522

    Article  CAS  Google Scholar 

  5. Nix EL, Ward IM (1986) The measurement of the shear piezoelectric coefficients of polyvinylidene fluoride. Ferroelectrics 67:137–141. doi:10.1080/00150198608245016

    Article  CAS  Google Scholar 

  6. Zhang QM, Bharti V, Kavarnos G (2002) Poly(vinylidene fluoride) (PVDF) and its copolymers. Encycl. Smart Mater

  7. Hilczer B, Szafrański M, Hilczer A (2012) Pressure-induced changes in the dielectric response of polymer relaxors. Appl Phys Lett 100:052904. doi:10.1063/1.3681372

    Article  Google Scholar 

  8. Gregorio Jr R, Ueno EM (1999) Effect of crystalline phase, orientation and temperature on the dielectric properties of poly (vinylidene fluoride)(PVDF). J Mater Sci 34:4489–4500

    Article  CAS  Google Scholar 

  9. Remškar M, Iskra I, Jelenc J, et al. (2013) A novel structure of polyvinylidene fluoride (PVDF) stabilized by MoS2 nanotubes. Soft Matter 9:8647. doi:10.1039/c3sm51279g

    Article  Google Scholar 

  10. Scheinbeim J, Nakafuku C, Newman BA, Pae KD (1979) High-pressure crystallization of poly(vinylidene fluoride). J Appl Phys 50:4399. doi:10.1063/1.326429

    Article  CAS  Google Scholar 

  11. Lovinger A (1982) Poly(vinylidene fluoride). In: DC B (ed) Dev. Cryst. Polym. Springer, Netherlands, pp. 195–273

    Google Scholar 

  12. Dahiya RS, Cattin D, Adami A, et al. (2011) Towards tactile sensing system on chip for robotic applications. IEEE Sensors J 11:3216–3226. doi:10.1109/JSEN.2011.2159835

    Article  Google Scholar 

  13. Henkel K, Lazareva I, Mandal D, et al. (2009) Electrical investigations on metal/ferroelectric/insulator/semiconductor structures using poly[vinylidene fluoride trifluoroethylene] as ferroelectric layer for organic nonvolatile memory applications. J Vac Sci Technol B 27:504–507. doi:10.1116/1.3043476

    Article  CAS  Google Scholar 

  14. Ye H-J, Shao W-Z, Zhen L (2013) Crystallization kinetics and phase transformation of poly(vinylidene fluoride) films incorporated with functionalized BaTiO3 nanoparticles. J Appl Polym Sci 129:2940–2949. doi:10.1002/app.38949

    Article  CAS  Google Scholar 

  15. Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci B Polym Phys 40:1682–1689. doi:10.1002/polb.10223

    Article  CAS  Google Scholar 

  16. Lopes AC, Costa CM, Tavares CJ, et al. (2011) Nucleation of the electroactive γ phase and enhancement of the optical transparency in low filler content poly(vinylidene)/clay nanocomposites. J Phys Chem C 115:18076–18082. doi:10.1021/jp204513w

    Article  CAS  Google Scholar 

  17. Benz M, Euler WB, Gregory OJ (2002) The role of solution phase water on the deposition of thin films of poly(vinylidene fluoride). Macromolecules 35:2682–2688. doi:10.1021/ma011744f

    Article  CAS  Google Scholar 

  18. Martins P, Moya X, Phillips LC, et al. (2011) Linear anhysteretic direct magnetoelectric effect in Ni0.5Zn0.5Fe2O4 /poly(vinylidene fluoride-trifluoroethylene) 0–3 nanocomposites. J Phys Appl Phys 44:482001. doi:10.1088/0022-3727/44/48/482001

    Article  Google Scholar 

  19. Dang Z-M, Wang L, Yin Y, et al. (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857. doi:10.1002/adma.200600703

    Article  CAS  Google Scholar 

  20. Clauss FJ (1972) Chapter 4 - molybdenum disulfide. In: Clauss FJ (ed) Solid lubr. Self-Lubr. Solids. Academic Press, pp. 75–112

  21. Chen J, Kuriyama N, Yuan H, et al. (2001) Electrochemical hydrogen storage in MoS2 nanotubes. J Am Chem Soc 123:11813–11814. doi:10.1021/ja017121z

    Article  CAS  Google Scholar 

  22. Wang J, Han S, Zhang W, et al. (2013) Effects of MoS2 addition on the hydrogen storage properties of 2LiBH4–MgH2 systems. Int J Hydrog Energy 38:14631–14637. doi:10.1016/j.ijhydene.2013.08.129

    Article  CAS  Google Scholar 

  23. Zhao Y, Zhang Y, Yang Z, et al. (2013) Synthesis of MoS2 and MoO2 for their applications in H2 generation and lithium ion batteries: a review. Sci Technol Adv Mater 14:043501. doi:10.1088/1468-6996/14/4/043501

    Article  Google Scholar 

  24. Cesano F, Bertarione S, Piovano A, et al. (2011) Model oxide supported MoS2 HDS catalysts: structure and surface properties. Catal Sci Technol 1:123. doi:10.1039/c0cy00050g

    Article  CAS  Google Scholar 

  25. Loan P. T. K., Zhang W, Lin C.-T., et al. (2014) Graphene/MoS2 Heterostructures for Ultrasensitive Detection of DNA Hybridisation. Advanced Materials 26:4838–4844. doi:10.1002/adma.201401084

  26. Wang L, Dang Z-M (2005) Carbon nanotube composites with high dielectric constant at low percolation threshold. Appl Phys Lett 87:042903. doi:10.1063/1.1996842

    Article  Google Scholar 

  27. Yu L, Cebe P (2009) Effect of nanoclay on relaxation of poly(vinylidene fluoride) nanocomposites. J Polym Sci B Polym Phys 47:2520–2532. doi:10.1002/polb.21864

    Article  CAS  Google Scholar 

  28. Połomska M, Hilczer B, Markiewicz E, et al. (2010) Effect of processing conditions on the dielectric and Raman response of electroactive polymers. Ferroelectrics 405:138–145. doi:10.1080/00150193.2010.483192

    Article  Google Scholar 

  29. Tashiro K, Kobayashi M, Tadokoro H (1981) Vibrational spectra and disorder-order transition of poly (vinylidene fluoride) form III. Macromolecules 14:1757–1764

    Article  CAS  Google Scholar 

  30. Boccaccio T, Bottino A, Capannelli G, Piaggio P (2002) Characterization of PVDF membranes by vibrational spectroscopy. J Membr Sci 210:315–329

    Article  CAS  Google Scholar 

  31. Nalwa HS (1995) Ferroelectric polymers: chemistry, physics, and applications. Marcel Dekker, Inc., New York

    Google Scholar 

  32. Bachmann M, Gordon WL, Weinhold S, Lando JB (1980) The crystal structure of phase IV of poly(vinylidene fluoride). J Appl Phys 51:5095. doi:10.1063/1.327425

    Article  CAS  Google Scholar 

  33. Wieting TJ, Verble JL (1971) Infrared and Raman studies of long-wavelength optical phonons in hexagonal MoS2. Phys Rev B 3:4286

    Article  Google Scholar 

  34. Jaegermann W (1992) Surface studies of layered materials in relation to energy converting interfaces. In: Aruchamy A (ed) Photoelectrochem. Photovolt. Layer. Semicond. Kluwer Academic Publishers, Dordrecht, pp. 195–295

    Chapter  Google Scholar 

  35. Bobnar V, Vodopivec B, Levstik A, et al. (2003) Dielectric properties of relaxor-like vinylidene fluoride − trifluoroethylene-based electroactive polymers. Macromolecules 36:4436–4442. doi:10.1021/ma034149h

    Article  CAS  Google Scholar 

  36. Furukawa T (1989) Ferroelectric properties of vinylidene fluoride copolymers. Phase Transit 18:143–211. doi:10.1080/01411598908206863

    Article  CAS  Google Scholar 

  37. Bharti V, Xu HS, Shanthi G, et al. (2000) Polarization and structural properties of high-energy electron irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer films. J Appl Phys 87:452. doi:10.1063/1.371883

    Article  CAS  Google Scholar 

  38. Hilczer B, Smogór H, Goslar J (2006) Dielectric response of polymer relaxors. J Mater Sci 41:117–127. doi:10.1007/s10853-005-5949-x

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was financially supported by Slovenian Research Agency under project 1000-11-310181 and programs P1-0099 and P1-0125 and by Ministry of Education, Science and Sport of Republic of Slovenia and European Social Fund under project PR-05648.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Varlec.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varlec, A., Eršte, A., Bobnar, V. et al. Influence of preparation conditions on structural and dielectric properties of PVDF–MoS2 nanotubes composite films. J Polym Res 23, 34 (2016). https://doi.org/10.1007/s10965-016-0930-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-016-0930-8

Keywords

Navigation