Skip to main content
Log in

Largely enhanced effective porosity of uniaxial stretched polypropylene membrane achieved by pore-forming agent

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A simple method for enhancing the effective porosity of the uniaxial stretched polypropylene (PP) membrane through the introduction of a pore-forming agent polyoxyethyleneoctylphenyl-10 (OP-10) was developed. The PP membrane was prepared through melt-compounding, compression molding and subsequent uniaxial tensile process. The microstructures of as-prepared samples and pore morphologies of the stretched membranes were investigated. The effective porosity was measured through soaking method using ethanol as the soaking liquid. The results showed that many initial pores were successfully introduced into the samples with the addition of OP-10. OP-10 leaded to the decrease of the crystallization temperature, melting temperature and crystallinity of PP samples as obtained. The effective porosity increased with increasing tensile strain, and largely enhanced effective porosity was achieved for the samples with the relatively high content of OP-10. This work provides an effective method for the preparation of the stretched PP membrane with high effective porosity by combining the incorporation of initial pores with the uniaxial stretching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Gao Y, Jubera AMS, Marinas BJ, Moore JS (2013) Nanofiltration membranes with modified active layer using aromatic polyamide dendrimers. Adv Funct Mater 23:598–607

    Article  CAS  Google Scholar 

  2. Rijn P, Tutus M, Kathrein C, Mougin NC, Park H, Hein C, Schürings MP (2014) Ultra‐Thin Self‐Assembled Protein‐Polymer Membranes: A New Pore Forming Strategy. Adv Funct Mater 24:6762–6770

    Article  Google Scholar 

  3. Cho WK, Choi IS (2008) Fabrication of hairy polymeric films inspired by geckos: wetting and high adhesion properties. Adv Funct Mater 18:1089–1096

    Article  CAS  Google Scholar 

  4. Gudjonsdottir M, Palsson H, Eliasson J, Saevarsdottir G (2015) Calculation of relative permeabilities of water and steam from laboratory measurements. Geothermics 53:396–405

    Article  Google Scholar 

  5. Mattia D, Leese H, Lee KP (2015) Carbon nanotube membranes: from flow enhancement to permeability. J Membr Sci 475:266–272

    Article  CAS  Google Scholar 

  6. Yu SC, Zheng YP, Zhou Q, Shuai S (2012) Facile modification of polypropylene hollow fiber microfiltration membranes for nanofiltration. Desalination 298:49–58

    Article  CAS  Google Scholar 

  7. Wang C, Xiao CF, Huang QL, Pan J (2015) A study on structure and properties of poly(p –phenylene terephthamide) hybrid porous membranes. J Membr Sci 474:132–139

    Article  CAS  Google Scholar 

  8. Offord GT, Armstrong SR, Freeman BD, Baer E, Hiltner A, Paul DR (2013) Influence of processing strategies on porosity and permeability of β- nucleated isotactic polypropylene stretched films. Polymer 54:2796–2807

    Article  CAS  Google Scholar 

  9. Villaluenga JPG, Khayet M, López-Manchado MA, Valentin JL, Seoane B, Mengual JI (2007) Gas transport properties of polypropylene/clay composite. Eur Polym J 43:1132–1143

    Article  CAS  Google Scholar 

  10. Liu Y, Yu SN, Wu H, Li YF, Wang SF, Tian ZZ, Jiang ZY (2014) High permeability hydrogel membranes of chitosan/polyether-block-amide blends for CO2. J Membr Sci 469:198–208

    Article  CAS  Google Scholar 

  11. Yuan F, Wang Z, Li SC (2012) Formation–structure–performance correlation of thin film composite membranes prepared by interfacial polymerization for gas separation. J Membr Sci 421–422:327–341

    Article  Google Scholar 

  12. Karger-Kocsis J, Varga J, Ehrenstein GW (1997) Comparsion of the fracture and failure behavior of injection moulded alpha-and beta-polypropylene in high speed three-point bending tests. J Appl Polym Sci 64:2057–2066

    Article  CAS  Google Scholar 

  13. Matsuyama H, OIkafuji H, Maki T, Teramoto M, Tsujioka N (2002) Membrane formation via thermally induced phase separation in polypropylene/polybutene/diluent system. J Appl Polym Sci 84:1701–1708

    Article  CAS  Google Scholar 

  14. Tang N, Jia Q, Zhang HJ, Li JJ, Cao S (2010) Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination 256:27–36

    Article  CAS  Google Scholar 

  15. Farhad S, Ajji A, Carreau PJ (2007) Analysis of microporous membranes obtained from polypropylene films by stretching. J Membr Sci 292:62–71

    Article  Google Scholar 

  16. Tabatabaei SH, Carreau PJ, Ajji A (2009) Microporous membranes obtained from PP/HDPE multilayer films by stretching. J Membr Sci 345:148–159

    Article  CAS  Google Scholar 

  17. Feng C, Kimura Y (1996) Structure and gas permeability of microporous films prepared by biaxial drawing of β-form polypropylene. Polymer 37:573–579

    Article  Google Scholar 

  18. Offord GT, Armstrong SR, Freeman BD, Baer E, Hiltner A, Swinnea JS, Paul DR (2013) Porosity enhance ment in b nucleated isotactic polypropylene stretchedfilms by thermal annealing. Polymer 54:2577–2589

    Article  CAS  Google Scholar 

  19. Matsuyama H, Maki T, Teramoto M, Asano K (2002) Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. J Membr Sci 204:323–328

    Article  CAS  Google Scholar 

  20. Tabatabaei SH, Carreau PJ, Ajji A (2009) Effect of processing on the crystalline orientation, morphology, and mechanical properties of polypropylene cast films and microporous membrane formation. Polymer 50:4228–4240

    Article  CAS  Google Scholar 

  21. Zhao W, Su YL, Li C, Shi Q, Ning X, Jiang ZY (2008) Fabrication of antifouling polyethersulfone ultrafiltration membranes using Pluronic F127 as both surface modifier and pore-forming agent. J Membr Sci 318:405–412

    Article  CAS  Google Scholar 

  22. Meier MM, Kanis LA, Soldi V (2004) Characterization and drug-permeation profiles of microporous and dense cellulose acetate membranes: influence of plasticizer and pore forming agent. Int J Pharm 278:99–110

    Article  CAS  Google Scholar 

  23. Bashford CL, Alder GM, Graham JM (1988) Ion modulation of membrane permeability: effect of cations on intact cells and on cells and phospholipid bilayers treated with pore-forming agents. J Membr Biol 103:79–94

    Article  CAS  Google Scholar 

  24. Huang Y, Kinloch A (1992) The toughness of epoxy polymers containing microvoids. Polymer 33:1330–1332

    Article  CAS  Google Scholar 

  25. Bagheri R, Pearson RA (1995) Compressive properties of Nanoclay/epoxy nanocomposites. Polymer 36:4883–4885

    Article  CAS  Google Scholar 

  26. Chen JW, Dai J, Yang JH, Zhang N, Huang T, Wang Y (2014) Amplified toughening effect of annealing on isotactic polypropylene realized by introducing microvoids. Ind Eng Chem Res 53:4679–4688

    Article  CAS  Google Scholar 

  27. Li JX, Cheung WL, Jia D (1999) Functionalization of multi-walled carbon nanotubes (MWCNTs) with pimelic acid molecules: effect of linkage on β-crystal formation in an isotactic polypropylene (iPP) matrix. Polymer 40:1219–1222

    Article  CAS  Google Scholar 

  28. Liu SJ, Zhou CX, Yu W (2011) Phase separation and structure control in ultra-high molecular weight polyethylene microprous membrane. J Membr Sci 379:268–278

    Article  CAS  Google Scholar 

  29. Chu F, Yamaoka T, Ide H, Kimura Y (1994) Microvoid formation process during the plastic deformation of β-form polypropylene. Polymer 35:3442–3448

    Article  CAS  Google Scholar 

  30. Kotek J, Raab M, Baldrian J, Grellmann W (2002) The effect of specific β-nucleation on morphology and mechanical behavior of isotactic polypropylene. J Appl Polym Sci 85:1174–1184

    Article  CAS  Google Scholar 

  31. Liang GG, Cook WD, Tcharkhtchi A, Sautereau H (2011) Epoxy as a reactive plasticizer for improving polycarbonate processibility. Eur Polym J 47:1578–1588

    Article  CAS  Google Scholar 

  32. Pawlak A, Rozanski A, Galeski A (2013) Thermovision studies of plastic deformation and cavitation in polypropylene. Mech Mater 67:104–118

    Article  Google Scholar 

  33. Zhang XC, Butler MF, Cameron RE (2000) The ductile–brittle transition of irradiated isotactic polypropylene studied using simultaneous small angle X-ray scattering and tensile deformation. Polymer 41:3797–3807

    Article  CAS  Google Scholar 

  34. Rozanski A, Galeski A, Debowska M (2011) Initiation of cavitation of polypropylene during tensile drawing. Macromolecules 44:20–28

    Article  CAS  Google Scholar 

  35. Lei CH, Wu SQ, Xu RJ, Cai Q, Hu B, Peng XL, Shi WQ (2013) Formation of stable crystalline connecting bridges during the fabrication of polypropylene microporous membrane. Polym Bull 70:1353–1366

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors express their sincere thanks to the National Natural Science Foundation of China (51173151) and Distinguished Young Scholars Foundation of Sichuan (2012JQ0057) for financial support. Dr. Yong Wang greatly appreciated Alexander von Humboldt Foundation (Germany) for providing the chance to carry out the research in Germany. Prof. Manfred Stamm and Mr. Michael Göbel (Leibniz-Institut für Polymerforschung Dresden e. V ., Germany) were appreciated for their assistance when using SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, J., Liu, Cm., Yang, Jh. et al. Largely enhanced effective porosity of uniaxial stretched polypropylene membrane achieved by pore-forming agent. J Polym Res 23, 17 (2016). https://doi.org/10.1007/s10965-015-0909-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0909-x

Keywords

Navigation