Skip to main content
Log in

Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Based on Diels-Alder reaction, a furyl-telechelic semicrystalline polycaprolactone was crosslinked by a tris-maleimide crosslinker. The synthesized precursors and network were fully characterized via proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared (FT-IR) spectroscopies, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) and wide-angle powder X-ray diffraction (XRD) measurements. The obtained material showed mendability of scratches under thermal treatment, as evidenced by optical microscopy and tensile analysis. The mending process was a combination of the shape recovery effect favoring scratch closure and the re-crosslinking of the cleaved Diels-Alder bonds at temperatures slightly above the melting transition of polycaprolactone chains. A scratch healing efficiency determined by tensile tests of about 70 % was achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Blaiszik BJ, Kramer SLB, Olugebefola SC, Moore JS, Sottos NR, White SR (2010) Self-healing polymers and composites. Annu Rev Mater Res 40:179–211

    Article  CAS  Google Scholar 

  2. Hillewaere XKD, Teixeira RFA, Nguyen L-TT, Ramos JA, Rahier H, Du Prez FE (2014) Autonomous self-healing of epoxy thermosets with thiol-isocyanate chemistry. Adv Funct Mater 24:5575–5583

    Article  CAS  Google Scholar 

  3. Fereidoon A, Ghorbanzadeh Ahangari M, Jahanshahi M (2013) Effect of nanoparticles on the morphology and thermal properties of self-healing poly(urea-formaldehyde) microcapsules. J Polym Res 20:1–8

    Article  CAS  Google Scholar 

  4. Rahimi A, Amiri S (2014) Self-healing hybrid nanocomposite coatings with encapsulated organic corrosion inhibitors. J Polym Res 22:1–8

    Google Scholar 

  5. Bergman SD, Wudl F (2008) Mendable polymers. J Mater Chem 18:41–62

    Article  CAS  Google Scholar 

  6. Zhang Y, v Y-h, Zhang Z-p (2015) The influence of 2,4-toluene diisocyanate content on the intrinsic self-healing performance of polyurethane at room-temperature. J Polym Res 22:1–6

    Article  Google Scholar 

  7. Cheng C, Bai X, Zhang X, Li H, Huang Q, Tu Y (2015) Self-healing polymers based on a photo-active reversible addition-fragmentation chain transfer (RAFT) agent. J Polym Res 22:1–8

    Article  CAS  Google Scholar 

  8. Zhang MQ, Rong MZ (2013) Intrinsic self-healing of covalent polymers through bond reconnection towards strength restoration. Polym Chem 4:4878–4884

    Article  CAS  Google Scholar 

  9. Liu Y-L, Chuo T-W (2013) Self-healing polymers based on thermally reversible Diels-Alder chemistry. Polym Chem 4:2194–2205

    Article  CAS  Google Scholar 

  10. Mignard N, Okhay N, Jegat C, Taha M (2013) Facile elaboration of polymethylmethacrylate / polyurethane interpenetrating networks using Diels-Alder reactions. J Polym Res 20:1–13

    Article  CAS  Google Scholar 

  11. Chen X, Dam MA, Ono K, Mal A, Shen H, Nutt SR, Sheran K, Wudl F (2002) A thermally re-mendable cross-linked polymeric material. Science 295:1698–1702

    Article  CAS  Google Scholar 

  12. Tasdelen MA (2011) Diels-Alder “click” reactions: recent applications in polymer and material science. Polym Chem 2:2133–2145

    Article  CAS  Google Scholar 

  13. Tian Q, Yuan YC, Rong MZ, Zhang MQ (2009) A thermally remendable epoxy resin. J Mater Chem 19:1289–1296

    Article  CAS  Google Scholar 

  14. Zhang Y, Broekhuis AA, Picchioni F (2009) Thermally self-healing polymeric materials: the next step to recycling thermoset polymers? Macromolecules 42:1906–1912

    Article  CAS  Google Scholar 

  15. Kavitha AA, Singha NK (2009) “Click chemistry” in tailor-made polymethacrylates bearing reactive furfuryl functionality: a new class of self-healing polymeric material. ACS Appl Mater Interfaces 1:1427–1436

    Article  CAS  Google Scholar 

  16. Scheltjens G, Diaz MM, Brancart J, Assche GV, Mele BV (2013) A self-healing polymer network based on reversible covalent bonding. React Funct Polym 73:413–420

    Article  CAS  Google Scholar 

  17. Bose RK, Kötteritzsch J, Garcia SJ, Hager MD, Schubert US, van der Zwaag S (2014) A rheological and spectroscopic study on the kinetics of self-healing in a single-component diels–alder copolymer and its underlying chemical reaction. J Polym Sci Part A Polym Chem 52:1669–1675

    Article  CAS  Google Scholar 

  18. Lendlein A, Sauter T (2013) Shape-memory effect in polymers. Macromol Chem Phys 214:1175–1177

    Article  CAS  Google Scholar 

  19. Lendlein A, Kelch S (2002) Shape-memory polymers. Angew Chem Int Ed 41:2034–2057

    Article  CAS  Google Scholar 

  20. Lendlein A, Behl M, Hiebl B, Wischke C (2010) Shape-memory polymers as a technology platform for biomedical applications. Expert Rev Med Devices 7:357–379

    Article  CAS  Google Scholar 

  21. Leng J, Lan X, Liu Y, Du S (2011) Shape-memory polymers and their composites: stimulus methods and applications. Prog Mater Sci 56:1077–1135

    Article  CAS  Google Scholar 

  22. Xu H, Yu C, Wang S, Malyarchuk V, Xie T, Rogers JA (2013) Deformable, programmable, and shape-memorizing micro-optics. Adv Funct Mater 23:3299–3306

    Article  CAS  Google Scholar 

  23. Behl M, Razzaq MY, Lendlein A (2010) Multifunctional shape-memory polymers. Adv Mater 22:3388–3410

    Article  CAS  Google Scholar 

  24. Kirkby EL, Rule JD, Michaud VJ, Sottos NR, White SR, Månson J-AE (2008) Embedded shape-memory alloy wires for improved performance of self-healing polymers. Adv Funct Mater 18:2253–2260

    Article  CAS  Google Scholar 

  25. Kirkby EL, Michaud VJ, Månson JAE, Sottos NR, White SR (2009) Performance of self-healing epoxy with microencapsulated healing agent and shape memory alloy wires. Polymer 50:5533–5538

    Article  CAS  Google Scholar 

  26. Li G, Zhang P (2013) A self-healing particulate composite reinforced with strain hardened short shape memory polymer fibers. Polymer 54:5075–5086

    Article  CAS  Google Scholar 

  27. Li G, Ajisafe O, Meng H (2013) Effect of strain hardening of shape memory polymer fibers on healing efficiency of thermosetting polymer composites. Polymer 54:920–928

    Article  CAS  Google Scholar 

  28. Rodriguez ED, Luo X, Mather PT (2011) Linear/network poly(ε-caprolactone) blends exhibiting Shape Memory Assisted Self-Healing (SMASH). ACS Appl Mater Interfaces 3:152–161

    Article  CAS  Google Scholar 

  29. Luo X, Mather PT (2013) Shape memory assisted self-healing coating. ACS Macro Lett 2:152–156

    Article  CAS  Google Scholar 

  30. García-Huete N, Laza J, Cuevas J, Gonzalo B, Vilas J, León L (2014) Shape memory effect for recovering surface damages on polymer substrates. J Polym Res 21:1–10

    Article  Google Scholar 

  31. Zhang J, Niu Y, Huang C, Xiao L, Chen Z, Yang K, Wang Y (2012) Self-healable and recyclable triple-shape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction. Polym Chem 3:1390–1393

    Article  CAS  Google Scholar 

  32. Rivero G, Nguyen L-TT, Hillewaere XKD, Du Prez FE (2014) One-Pot thermo-remendable shape memory polyurethanes. Macromolecules 47:2010–2018

    Article  CAS  Google Scholar 

  33. Lu X, Fei G, Xia H, Zhao Y (2014) Ultrasound healable shape memory dynamic polymers. J Mater Chem A 2:16051–16060

    Article  CAS  Google Scholar 

  34. Heo Y, Sodano HA (2014) Self-healing polyurethanes with shape recovery. Adv Funct Mater 24:5261–5268

    Article  CAS  Google Scholar 

  35. Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer—Polycaprolactone in the 21st century. Prog Polym Sci 35:1217–1256

    Article  CAS  Google Scholar 

  36. Narita M, Teramoto T, Okawara M (1971) Syntheses and reactions of functional polymers. LIV. Syntheses and polymerizations of O-substituted-N-hydroxymaleimides. Bull Chem Soc Jpn 44:1084–1089

    Article  CAS  Google Scholar 

  37. Nguyen L-TT, Gokmen MT, Du Prez FE (2013) Kinetic comparison of 13 homogeneous thiol-X reactions. Polym Chem 4:5527–5536

    Article  CAS  Google Scholar 

  38. Mellouki A, Herman M, Demaison J, Lemoine B, Margulès L (1999) Rotational analysis of the ν7 band in furan (C4H4O). J Mol Spectrosc 198:348–357

    Article  CAS  Google Scholar 

  39. Mani R, Bhattacharya M (2001) Properties of injection moulded blends of starch and modified biodegradable polyesters. Eur Polym J 37:515–526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was fully supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number “104.02-2013.19”.

Viet Q. Nguyen is acknowledged for the assistance with the FT-IR and GPC measurements. Tri M. Phan is acknowledged for the assistance with the tensile tests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le-Thu T. Nguyen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, LT.T., Nguyen, H.T. & Truong, T.T. Thermally mendable material based on a furyl-telechelic semicrystalline polymer and a maleimide crosslinker. J Polym Res 22, 186 (2015). https://doi.org/10.1007/s10965-015-0827-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0827-y

Keywords

Navigation