Skip to main content
Log in

Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The isotactic polypropylene/carbon black (iPP/CB) and the long-chain branched polypropylene/carbon black (LCBPP/CB) composite melts with the melt blending method and the solution process were chosen in this paper to know the relationship between rheological and electrical percolation process and learn the evolution and the destruction of rheological network. The more rheological percolation threshold than electrical percolation threshold in iPP/CB composites and the less rheological percolation threshold than electrical percolation threshold in LCBPP/CB composites are mainly attributed to the two kinds of mechanisms governing the electrical network and the rheological network. The agglomeration of CB particles which is accelerated by annealing at elevated temperatures promotes the self-perfection of rheological network. The strong interaction between the polar long-chain branched structure and filler also led to the reduced tp. The network of LCBPP/CB composites is more difficult to be broken than the network of iPP/CB composites with the solution process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Vacca P, Nenna G, Miscioscia R, Palumbo D, Minarini C, Sala DD (2009) Patterned organic and inorganic composites for electronic applications. J Phys Chem C 113:5777–5783

    Article  CAS  Google Scholar 

  2. Nogueira AF, Lomba BS, Soto-Oviedo MA, Correia CRD, Corio P, Furtado CA et al (2007) Polymer solar cells using single-wall carbon nanotubes modified with thiophene pedant groups. J Phys Chem C 111:18431–18438

    Article  CAS  Google Scholar 

  3. Guo Z, Lee SE, Kim H, Park S, Hahn HT, Karki AB et al (2009) Fabrication, characterization and microwave properties of polyurethane nanocomposites reinforced with iron oxide and barium titanate nanoparticles. Acta Mater 57:267–277

    Article  CAS  Google Scholar 

  4. Shimada T, Ookubo K, Komuro N, Shimizu T, Uehara N (2007) Blue-to-red chromatic sensor composed of gold nanoparticles conjugated with thermoresponsive copolymer for thiol sensing. Langmuir 23:11225–11232

    Article  CAS  Google Scholar 

  5. Wen Z, Ci S, Li J (2009) Pt nanoparticles inserting in carbon nanotube arrays: nanocomposites for glucose biosensors. J Phys Chem C 113:13482–13487

    Article  CAS  Google Scholar 

  6. Guo Z, Park S, Hahn HT, Wei S, Moldovan M, Karki AB et al (2007) Giant magnetoresistance behavior of an iron/carbonized polyurethane nanocomposite. Appl Phys Lett 90:053111

    Article  Google Scholar 

  7. Guo Z, Hahn HT, Lin H, Karki AB, Young DP (2008) Magnetic and magnetoresistance behaviors of particulate iron/vinyl ester resin nanocomposites. J Appl Phys 104:014314

    Article  Google Scholar 

  8. Kim P, Doss NM, Tillotson JP, Hotchkiss PJ, Pan M-J, Marder SR et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592

    Article  CAS  Google Scholar 

  9. Zhang Q, Archer LA (2002) Poly (ethylene oxide)/silica nanocomposites: structure and rheology. Langmuir 18:10435–10442

    Article  CAS  Google Scholar 

  10. Cassagnau P (2008) Melt rheology of organoclay and fumed silica nanocomposites. Polymer 49:2183–2196

    Article  CAS  Google Scholar 

  11. Du F, Scogna RC, Zhou W, Brand S, Fischer JE, Winey KI (2004) Nanotube networks in polymer nanocomposites: rheology and electrical conductivity. Macromolecules 37:9048–9055

    Article  CAS  Google Scholar 

  12. Pötschke P, Abdel-Goad M, Alig I et al (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45:8863–8870

    Article  Google Scholar 

  13. Wu G, Lin J, Zheng Q (2006) Correlation between percolation behavior of electricity and viscoelasticity for graphite filled high density polyethylene. Polymer 47:2442–2447

    Article  CAS  Google Scholar 

  14. Huang S, Liu Z, Yin C, Wang Y, Gao Y, Chen C, Yang M (2012) Dynamic electrical and rheological percolation in isotactic poly(propylene)/carbon black composites. Macromol Mater Eng 279:51–59

    Article  Google Scholar 

  15. Zhang C, Wang P, Ma CA, Wu GZ, Sumita M (2006) Temperature and time dependence of conductive network formation: dynamic percolation and percolation time. Polymer 47:466–73

    Article  CAS  Google Scholar 

  16. Katada A, Konishi Y, Isogai T, Tominaga Y, Asai S, Sumita M (2003) Dynamic percolation phenomenon of poly (methyl methacrylate)/surface fluorinated carbon black composite. J Appl Polym Sci 89:1151–5

    Article  CAS  Google Scholar 

  17. Bӧhm GGA, Nguyen MN (1995) Flocculation of carbon black in filled rubber compounds. I. Flocculation occurring in unvulcanized compounds during annealing at elevated temperatures. J Appl Polym Sci 55:1041–50

    Article  Google Scholar 

  18. Cipriano BH, Kota AK, Gershon AL, Laskowski CJ, Kashiwagi T, Bruck HA et al (2008) Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49:4846–51

    Article  CAS  Google Scholar 

  19. Wu GZ, Asai S, Sumita M (2002) Carbon black as a self-diagnosing probe to trace polymer dynamics in highly filled compositions. Macromolecules 35:1708–13

    Article  CAS  Google Scholar 

  20. Sternstein SS, Zhu AJ (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273

    Article  CAS  Google Scholar 

  21. Frohlich J, Niedermeier W, Luginsland HD (2005) The effect of filler–filler and filler–elastomer interaction on rubber reinforcement. Compos A: Appl Sci Manuf 36:449–460

    Article  Google Scholar 

  22. Zhu ZY, Thompson T, Wang SQ, Meerwall ED, Halasa A (2005) Investigating linear and nonlinear viscoelastic behavior using model silica-particle-filled polybutadiene. Macromolecules 38:8816–8824

    Article  CAS  Google Scholar 

  23. Kim KY, Nam GJ, Lee JW (2007) Continuous extrusion of long-chain-branched polypropylene/clay nanocomposites with high-intensity ultrasonic waves. Compos Interfaces 14:533–544

    Article  CAS  Google Scholar 

  24. Yoon KH, Park S, Kim YC (2012) Study of the rheological properties and crystallization behavior of branched PP/silicate composites. Polym J 44:1098–1104

    Article  CAS  Google Scholar 

  25. Cassagnau P, Melis F (2003) Non-linear viscoelastic behaviour and modulus recovery in silica filled polymers. Polymer 44:6607–6615

    Article  CAS  Google Scholar 

  26. Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black–polymer composites. Carbon 40:139–143

    Article  CAS  Google Scholar 

  27. Skipa T, Lellinger D, Bohm W, Saphiannikova W, Alig I (2010) Influence of shear deformation on carbon nanotube networks in polycarbonate melts: interplay between build-up and destruction of agglomerates. Polymer 51:201–210

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This paper is supported by the financial support from the National Science Foundation of China (51373109, 51121001). The authors are also grateful to the State Key Laboratory Special Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Chen, Q., Lv, Y. et al. Rheological behaviors and electrical conductivity of long-chain branched polypropylene/carbon black composites with different methods. J Polym Res 22, 119 (2015). https://doi.org/10.1007/s10965-015-0751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0751-1

Keyword

Navigation