Skip to main content
Log in

Controlled synthesis of monodisperse thermo-responsive nanogel particles

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

A novel method of synthesizing aqueous suspensions of monodisperse thermo-responsive poly(N-isopropylacrylamide) nanogel particles of varying sizes in the deci-micron range viz., controlled drop addition method (CDAM) by modifying the one-pot method has been developed. Unlike the conventional one-pot method which lacks control on the growth of the nuclei, this method controls the nuclei growth, thereby controlling the size polydispersity. The nuclei growth can be controlled by varying the drop rate as well as the ratio of pre-gel solution. The study showed that an optimum drop rate is desired for achieving narrow size distribution. The synthesized suspensions have been characterized for their particle size and size polydispersity using dynamic light scattering technique. The resultant particles fall well in the deci-micron regime with narrow size distribution. A plausible mechanism backed by atomic force microscopy images, governing the growth and size polydispersity is discussed. Implication of these monodisperse PNIPAM nanogel particles as carriers in drug delivery and as photonic crystals is briefed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Tata BVR., Brijitta J, Joshi RG. Thermo-responsive nanogel dispersions: dynamics and phase behavior. Int J Adv Eng Sci Appl Math. doi: 10.1007/s12572-010-0016-5

  2. Brijitta J, Tata BVR, Kaliyappan T (2009) Phase behavior of poly(N-isopropylacrylamide) nanogel dispersions: Temperature dependent particle size and interactions. J Nanosci Nanotechnol 9:5323–5328

    Article  CAS  Google Scholar 

  3. Senff H, Richtering W (1999) Temperature sensitive microgel suspensions: colloidal phase behavior and rheology of soft spheres. J Chem Phys 111:1705–1711

    Article  CAS  Google Scholar 

  4. Mohanty PS, Richtering W (2008) Structural ordering and phase behavior of charged microgels. J Phys Chem B 112(47):14692–14697

    Article  CAS  Google Scholar 

  5. Huang G, Hu Z (2007) Phase behavior and stabilization of microgel arrays. Macromolecules 40:3749–3756

    Article  CAS  Google Scholar 

  6. Rzaev ZMO, Dincer S, Piskin E (2007) Functional copolymers of N-isopropylacrylamide for bioengineering applications. Prog Polym Sci 32:534–595

    Article  CAS  Google Scholar 

  7. Ichikawa H, Fukumori Y (2000) A novel positively thermosensitive controlled-release microcapsule with membrane of nano-sized poly(N-isopropylacrylamide) gel dispersed in ethylcellulose matrix. J Control Release 63:107–119

    Article  CAS  Google Scholar 

  8. Hu J, Shiheng Z, Xinglong X (2012) Dual stimuli responsive poly (N-isopropylacrylamide-co-acrylic acid) hydrogels based on a β-cyclodextrin crosslinker: synthesis, properties, and controlled protein releas. J Polym Res 19(11):1–9

    Article  Google Scholar 

  9. Bucatariu S, Gheorghe F, Irina P, Mihaela B, Iuliana S, Valeria H, Marieta C (2014) Synthesis and characterization of thermosensitive poly (N-isopropylacrylamide-co-hydroxyethylacrylamide) microgels as potential carriers for drug delivery. J Polym Res 21(11):1–12

    Article  CAS  Google Scholar 

  10. Debord JD, Lyon A (2000) Thermoresponsive photonic crystals. J Phys Chem B 104(27):6327–6331

    Article  CAS  Google Scholar 

  11. Reese CE, Mikhonin AV, Kamenjicki M, Tikhonov A, Asher SA (2004) Nanogel nanosecond photonic crystal optical switching. J Am Chem Soc 126:1493–1496

    Article  CAS  Google Scholar 

  12. Debord JD, Eustis S, Debord SB, Loyfe MT, Lyon LA (2002) Color-tunable colloidal crystals from soft hydrogel nanoparticles. Adv Mater 14:658–662

    Article  CAS  Google Scholar 

  13. Su S, Ali MM, Filipe CDM, Li YF, Pelton R (2008) Microgel-based inks for paper-supported biosensing applications. Biomacromolecules 9:935–941

    Article  CAS  Google Scholar 

  14. Hu Z, Chen Y, Wang C, Zheng Y, Li Y (1998) Polymer gels with engineered environmentally responsive surface patterns. Nature 393:149–152

    Article  CAS  Google Scholar 

  15. Qiu Y, Park K (2001) Environment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  16. Gao J, Hu Z (2002) Optical properties of N-isopropylacrylamide microgel spheres in water. Langmuir 18:1360–1367

    Article  CAS  Google Scholar 

  17. Jones CD, Lyon LA (2000) Synthesis and characterization of multiresponsive core − shell microgels. Macromolecules 33:8301–8306

    Article  CAS  Google Scholar 

  18. Jones CD, Lyon LA (2003) Shell-restricted swelling and core compression in poly(N-isopropylacrylamide) core − shell microgels. Macromolecules 36:1988–1993

    Article  CAS  Google Scholar 

  19. Gan D, Lyon LA (2001) Tunable swelling kinetics in core − shell hydrogel nanoparticles. J Am Chem Soc 123:7511–7517

    Article  CAS  Google Scholar 

  20. Naeem H, Zahoor HF, Luqman AS, Mohammad S (2012) Synthesis and characterization of p (NIPAM-AA-AAm) microgels for tuning of optical Properties of silver nanoparticles. J Polym Res 19(9):1–10

    Article  CAS  Google Scholar 

  21. Saikia AK, Saroj A (2013) U. K. Mandal. Swelling dynamics of poly (NIPAM-co-AMPS) hydrogels synthesized using PEG as macroinitiator: effect of AMPS content. J Polym Res 20(1):1–9

    Article  CAS  Google Scholar 

  22. Wang J, Weiqian Z, Xuelian L, Wuke L (2014) Fabrication and characterization of temperature-sensitive smart luminescent nanoparticles of poly (N-isopropylacrylamide)/lanthanide-polyoxometalates with core-shell structure. J Polym Res 21(7):1–8

    Article  Google Scholar 

  23. Zhang Q, Zha L, Maa J, Liang B (2009) A novel route to prepare pH- and temperature-sensitive nanogels via a semibatch process. J Colloid Interface Sci 330:330–336

    Article  CAS  Google Scholar 

  24. Tata BVR (2001) Colloidal dispersions and phase transitions in charged colloids. Curr Sci 80:948–958

    CAS  Google Scholar 

  25. Berne BJ, Pecora R (1975) In dynamic light scattering. Wiley, New York

    Google Scholar 

  26. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  27. Osada Y, Hasebe M (1985) Chem Lett 9:1285–1288

    Article  Google Scholar 

  28. Kajiwara K, Ross-Murphy SB (1992) Synthetic gels on the move. Nature 355:208–209

    Article  Google Scholar 

  29. Langer R (1998) Drug delivery and targeting. Nature 392:5–10

    CAS  Google Scholar 

  30. Langer R (2001) Drugs on target. Science 293:58–59

    Article  CAS  Google Scholar 

  31. Malmsten M (2006) Soft drug delivery systems. Soft Matter 2:760–769

    Article  CAS  Google Scholar 

  32. Brijitta J, Tata BVR, Joshi RG, Kaliyappan T (2009) Random hcp and fcc structures in thermoresponsive microgel crystals. J Chem Phys 131:074904(1)–074904(8)

    Article  Google Scholar 

Download references

Acknowledgments

Authors acknowledge Shri. S. C. Chetal, Dr. C. S. Sundar and Dr. A. K. Arora for support and encouragement. First author acknowledges Dr. Jeppiaar and the Management, Sathyabama University for extending AFM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Brijitta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brijitta, J., Tata, B.V.R. & Joshi, R.G. Controlled synthesis of monodisperse thermo-responsive nanogel particles. J Polym Res 22, 36 (2015). https://doi.org/10.1007/s10965-015-0674-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-015-0674-x

Keywords

Navigation