Skip to main content
Log in

Effect of arm number of poly(acrylic acid) on cloud point temperature of poly(2-ethyl-2-oxazoline)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The phase transition behavior of poly(2-ethyl-2-oxazoline) (PEtOx) under complexation with star-shaped poly(acrylic acid) (PAA) having various arm numbers (two, three, four, and six) has been studied by turbidity and laser light scattering measurements. The change in cloud point temperature (T cp) of PEtOx was monitored as a function of pH, ionic strength, and arm number of the star polyelectrolyte. The shift in T cp to a lower value than that of pure PEtOx was more pronounced at pH 4.2 (pH < pKa), when the carboxylic acid groups are protonated as compared to pH 7.0 (pH > pKa ), when the acid moieties are partially ionized. Dynamic light scattering showed that these complexes may have micellar core-shell type structure with a mean hydrodynamic radius (R h) ranging from 12 nm to ∼200 nm depending upon the temperature. Significant shift in T cp was observed for six-arm star poly(acrylic acid) complexes at both pH values. This change in the T cp is accredited to the differences in the driving forces of phase transition, including hydrogen bonding between carboxylic acid groups of PAA and the carbonyl moiety of PEtOx as well as the hydrophobic interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen HL, Morawetz H (1982) Macromolecules 15:1445–1447

    Article  CAS  Google Scholar 

  2. Bokias G, Staikos G, Iliopoulos I, Audebert R (1994) Macromolecules 27:427–431

    Article  CAS  Google Scholar 

  3. Osada YJ (1979) Polym Sci Part A Polym Chem 17:3485–3498

    Article  CAS  Google Scholar 

  4. Bian FL, Liu MZ (2003) Eur Polym J 39:1867–1874

    Article  CAS  Google Scholar 

  5. Nurkeeva ZS, Mun GA, Khutoryanskiy VV, Bitekenova AB, Dubolazov AV, Esirkegenova SZ (2003) Eur Polym J 10:65–68

    CAS  Google Scholar 

  6. Dubolazov AV, Nurkeeva ZS, Mun GA, Khutoryanskiy VV (2006) Biomacromolecules 7:1637–1643

    Article  CAS  Google Scholar 

  7. Dou H, Tang M, Sun K (2005) Macromol Chem Phys 206:2177–2181

    Article  CAS  Google Scholar 

  8. Mun GA, Khutoryanskiy VV, Nurkeeva ZS, Urkimbaeva PI, Zhunuspaev D (2004) J Polym Sci Part B: Polym Phys 42:2625–2632

    Article  CAS  Google Scholar 

  9. Xu FJ, Zhang ZX, Ping Y, Li J, Kang ET, Neoh KG (2009) Biomacromolecules 10:285–293

    Article  CAS  Google Scholar 

  10. Nemoto Y, Borovkov A, Zhou Y-M, Talewa Y, Tatsumi E, Nakayama Y (2009) Bioconjug Chem 20:2293–2299

    Article  CAS  Google Scholar 

  11. Synatschke CV, Schallon A, Jerome V, Freitag R, Muller AHE (2011) Biomacromolecules 12:4247–4255

    Article  CAS  Google Scholar 

  12. Kim BS, Gao H, Argun AA, Matyjaszewski K, Hammond PT (2009) Macromolecules 42:368–375

    Article  CAS  Google Scholar 

  13. Choi I, Suntivich R, Plamper FA, Synatschke CV, Muller AHE, Tsukruk VVJ (2011) Am Chem Soc 133:9592–9606

    Article  CAS  Google Scholar 

  14. Zhizhang G, Xingyu C, Jianyu X, Duo W, Jianshu L, Chenlong X (2010) Macromolecules 21:9087–9093

    Google Scholar 

  15. Li Y, Dubin PL, Spindler R, Tomalia DA (1995) Macromolecules 28:8426–8428

    Article  CAS  Google Scholar 

  16. Miura N, Dubin PL, Moorefield CN, Newkome GR (1999) Langmuir 15:4245–4250

    Article  CAS  Google Scholar 

  17. Storkle D, Duschner S, Heimann N, Maskos M, Schmidt M (2007) Macromolecules 40:7998–8006

    Article  Google Scholar 

  18. Froehlich E, Mandeville JS, Weinert CM, Kreplak L, Tajmir-Riahi HA (2011) Biomacromolecules 12:511–517

    Article  CAS  Google Scholar 

  19. Ishizu K, Toyoda K, Furukawa T, Sogabe A (2004) Macromolecules 37:3954–3957

    Article  CAS  Google Scholar 

  20. Pergushov DV, Babin IA, Plamper FA, Zezin AB, Müller AHE (2008) Langmuir 24:6414–6419

    Article  CAS  Google Scholar 

  21. Pergushov DV, Babin IA, Plamper FA, Schmalz H, Muller AHE, Zezin AB (2009) Dokl Phys Chem 425:57–61

    Article  CAS  Google Scholar 

  22. Pergushov DV, Borisov OV, Zezin AB, Müller AHE (2011) Adv Polym Sci 241:131–161

    Article  CAS  Google Scholar 

  23. Babin IA, Pergushov DV, Wolf A, Plamper FA, Schmalz H, Müller AHE, Zezin AB (2011) Dokl Phys Chem 44:219–223

    Article  Google Scholar 

  24. Khutoryanskiy VV, Nurkeeva ZS, Mun GA, Dubolazov AVJ (2004) Appl Polym Sci 93:1946–1950

    Article  CAS  Google Scholar 

  25. Dubolazov AV, Nurkeeva ZS, Mun GA, Lukmanova DM, Khutoryanskiy VV (2004) Euras Chem Technol J 6:299–303

    CAS  Google Scholar 

  26. Staikos G, Karayanni K, Mylonas Y (1997) Macromol Chem Phys 198:2905–2915

    Article  CAS  Google Scholar 

  27. Koussathana M, Lianos G, Staikos G (1997) Macromolecules 30:7798–7802

    Article  CAS  Google Scholar 

  28. Nurkeeva ZS, Mun GA, Khutoryanskiy VV (2003) Macromol Biosci 3:283–295

    Article  CAS  Google Scholar 

  29. Lin PY, Clash C, Pearce EM, Kwei TK, Aponte MA (1988) J Polym Sci Part B: Polym Phys 26:603–619

    Article  CAS  Google Scholar 

  30. Haruna M (2010) Bajopas 3:250–254

    Google Scholar 

  31. Hoogenboom R, Thijs HML, Jochem MJHC, Van Lankvelt BM, Fijten MWM, Schubert US (2008) Chem Commun 44:5758–5760

    Article  Google Scholar 

  32. Kwon IC, Bae YH, Kim SW (1991) Nature 354:291–293

    Article  CAS  Google Scholar 

  33. Chen FL, Pearce EM, Kwei TK (1988) Polymer 29:2285–2289

    Article  CAS  Google Scholar 

  34. Lichkus AM, Painter PC, Coleman MM (1988) Macromolecules 21:2636–2641

    Article  CAS  Google Scholar 

  35. Ambreen J, Yang J, Ye X, Siddiq M (2013) Colloid Polym Sci 291:919–925

    Article  CAS  Google Scholar 

  36. Lee SC, Chang Y, Yoon JS, Kim C, Kwon IC, Kim YH, Jeong SY (1999) Macromolecules 32:1847–1852

    Article  CAS  Google Scholar 

  37. Kim C, Lee SC, Shin JH, Yoon JS, Kwon IC, Jeong SY (2000) Macromolecules 33:7448–7452

    Article  CAS  Google Scholar 

  38. Kim C, Lee SC, Kwon IC, Chung H, Jeong SY (2002) Macromolecules 35:193–200

    Article  CAS  Google Scholar 

  39. Mendrek B, Trzebicka B (2009) Eur Polym J 45:1979–1993

    Article  CAS  Google Scholar 

  40. Chen F, Liu G, Zhang GJ (2012) Phys Chem B 116:10941–10950

    Article  CAS  Google Scholar 

  41. Feng X, Pan C (2001) J Polym Sci: Polym Chem 39:2233–2243

    Article  CAS  Google Scholar 

  42. Zimm BHJ (1948) Chem Phys 16:1093–1099

    CAS  Google Scholar 

  43. Chu B (1991) Laser Light Scattering, Basic Principles and Practice, 2nd edn. Academic Press, New York, pp 2–8

    Google Scholar 

  44. Wu C, Xia KQ (1994) Rev Sci Instrum 65:587–590

    Article  CAS  Google Scholar 

  45. Bijsterbosch HD, Cohen SMA, Fleer GJ, van Caeter P, Goethals EJ (1998) Macromolecules 31:7436–7444

    Article  CAS  Google Scholar 

  46. Berne B, Pecora R (1976) Dynamic Light Scattering. Plenum Press, New York

    Google Scholar 

  47. Wu C, Niu AZ (1999) Sci China B 42:520–524

    Article  CAS  Google Scholar 

  48. Diab C, Akiyama Y, Kataoka K, Winnik FM (2004) Macromolecules 37:2556–2562

    Article  CAS  Google Scholar 

  49. Park JS, Akiyama Y, Winnik FM, Kataoka K (2004) Macromolecules 37:6786–6792

    Article  CAS  Google Scholar 

  50. Wiesbrock F, Hoogenboom R, Abeln CH, Schubert US (2004) Macromol Rapid Commun 25:1895–1899

    Article  CAS  Google Scholar 

  51. Christova D, Velichkova R, Loos W, Goethals EJ, Du Prez F (2003) Polymer 44:2255–2261

    Article  CAS  Google Scholar 

  52. Zhou S, Fan S, Au-yeung SCF, Wu C (1995) Polymer 36:1341–1346

    Article  CAS  Google Scholar 

  53. Gebhardt JE, Furstenau DW (1983) Colloids Surf 7:221–231

    Article  CAS  Google Scholar 

  54. Jones MS (1999) Eur Polym J 35:795–801

    Article  CAS  Google Scholar 

  55. Lu X, Hu Z, Schwartz J (2002) Macromolecules 35:9164–9168

    Article  CAS  Google Scholar 

  56. Hofmann AS et al (2000) J Biomed Mater Res 52:577–586

    Article  Google Scholar 

  57. Saeed A, Dominique MRG, Andrew GM (2012) React Funct Polym 72:77–82

    Article  CAS  Google Scholar 

  58. Nurkeeva ZS, Mun GA, Khutoryanskiy VV, Sergaziev AD (2001) Eur Polym J 37:1233–1237

    Article  CAS  Google Scholar 

  59. Belnikevich NG, Budtova TV, Ivanova NP, Panarin YF, Panov YP, Frenkel SY (1989) Vysokomol Soedin Ser A 31:1691–1696

    CAS  Google Scholar 

  60. Budtova TV, Belnikevich NG, Belyaev VM, Panov YN, Frenkel SY (1991) Vysokomol Soedin Ser B 33:520–525

    CAS  Google Scholar 

  61. Sivadasan K, Somasundaran P, Turro NJ (1991) Colloid Polym Sci 269:131–137

    Article  CAS  Google Scholar 

  62. Garay MT, Alava C, Rodriguez M (2000) Polymer 41:5799–5807

    Article  CAS  Google Scholar 

  63. Ye J, Xu J, Hu J, Wang X, Zhang G, Liu S, Wu C (2008) Macromolecules 41:4416–4422

    Article  CAS  Google Scholar 

  64. Bekturov EA, Bimendina LA (1981) Adv Polym Sci 41:99–147

    Article  CAS  Google Scholar 

  65. Iliopoulos I, Halary JL, Audebert RJ (1988) Polym Sci Part A Polym Chem 26:275–284

    Article  CAS  Google Scholar 

  66. Huang Y, Cheng H, Han, Charles C (2010) Macromolecules 43:10031–10037

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Ms. Jaweria Ambreen is thankful to Higher Education Commission of Pakistan for indigenous scholarship and IPFP fellowship program. We are also thankful to Dr. Xiaodong Ye, University of Science and Technology of China (USTC) for his thought provoking ideas and helpful discussions as well as Chen Fenggui, USTC in the synthesis of star-shaped polymers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Siddiq.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ambreen, J., Siddiq, M. Effect of arm number of poly(acrylic acid) on cloud point temperature of poly(2-ethyl-2-oxazoline). J Polym Res 21, 608 (2014). https://doi.org/10.1007/s10965-014-0608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0608-z

Keywords

Navigation