Skip to main content
Log in

A facile modification approach for polyacrylonitrile-based UF hollow fiber membrane utilizing polyacrylonitrile-g-poly(vinyl alcohol) graft copolymer

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Facile blending approach utilizing amphiphilic copolymers has received enormous attention from researchers owing to their unique self-organizing behaviour that can improve membrane structure and separation properties. This paper discusses the effect of the amount of acrylonitrile (AN) monomer added during polyacrylonitrile-g-polyvinyl alcohol (PAN-g-PVA) copolymer synthesis and its relationship to the properties and performance of PAN-based ultrafiltration (UF) hollow fiber membrane. The hollow fiber membranes were characterized using atomic force microscope, scanning electron microscope, X-ray photoelectron spectroscope and contact angle goniometer, in addition to performance evaluation with respect to protein rejection and antifouling resistance. As for the UF experiments, the membrane incorporated with copolymer of highest monomer composition achieved the highest pure water flux (178.76 L/m2.hr) coupled with good rejection of bovine serum albumin (BSA) and albumin from chicken egg (at least 83 %) when tested at 1 bar. The promising results are mainly due to the changes in the membrane morphological properties, surface roughness, surface chemical composition and hydrophilicity upon the addition of the copolymer. In terms of anti-fouling performance, generally, blend membrane prepared from copolymer of lowest amount of monomer produced good flux recovery for all proteins (74 %, 67 % and 62 % during BSA, albumin from chicken egg and trypsin) filtration due to the enrichment of PVA on membrane surface and its low surface roughness. The experimental results offer an important insight into the relationship between amount of monomer added during graft copolymer synthesis and membrane properties and performance, providing valuable information for high performance UF membrane for fouling mitigation especially in the area involving proteinaceous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cho YH, Kim HW, Nam SY, Park HB (2011) Fouling-tolerant polysulfone-poly(ethylene oxide) random copolymer ultrafiltration membranes. J Membr Sci 379:296–306

    Article  CAS  Google Scholar 

  2. Susanto H, Ulbricht M (2009) Characteristics, performance and stability of polyethersulfone ultrafiltration membranes prepared by phase separation method using different macromolecular additives. J Membr Sci 327:125–135

    Article  CAS  Google Scholar 

  3. Su Y, Li C, Zhao W, Shi Q, Wang H, Jiang Z et al (2008) Modification of polyethersulfone ultrafiltration membranes with phosphorylcholine copolymer can remarkably improve the antifouling and permeation properties. J Membr Sci 322:171–177

    Article  CAS  Google Scholar 

  4. María-Cinta VV, Beatriz CU, Silvia AB, Jaime LG (2012) Analysis of an ultrafiltration model: influence of operational conditions. Desalination 284:14–21

    Article  Google Scholar 

  5. Peeva PD, Knoche T, Pieper T, Ulbricht M (2012) Cross-flow ultrafiltration of protein solutions through unmodified and surface functionalized polyethersulfone membranes – effect of process conditions on separation performance. Sep Purif Technol 92:83–92

    Article  CAS  Google Scholar 

  6. Yi Z, Zhu LP, Zhao YF, Zhu BK, Xu YY (2012) An extending of candidate for the hydrophilic modification of polysulfone membranes from the compatibility consideration: the polyethersulfone-based amphiphilic copolymer as an example. J Membr Sci 390–391:48–57

    Article  Google Scholar 

  7. Hilal N, Ogunbiyi OO, Miles NJ, Nigmatullin R (2005) Methods employed for control of fouling in MF and UF membranes: a comprehensive review. Sep Sci Technol 40:1957–2005

    Article  CAS  Google Scholar 

  8. Yamamura H, Kimura K, Watanabe Y (2007) Mechanism involved in the evolution of physically irreversible fouling in microfiltration and ultrafiltration membranes used for drinking water treatment. Environ Sci Technol 41:6789–6794

    Article  CAS  Google Scholar 

  9. Kumar M, Ulbricht M (2013) Novel antifouling positively charged hybrid ultrafiltration membranes for protein separation based on blends of carboxylated carbon nanotubes and aminated poly (arylene ether sulfone). J Membr Sci 448:62–73

    Article  CAS  Google Scholar 

  10. Moriya A, Shen P, Ohmukai Y, Maruyama T, Matsuyama H (2012) Reduction of fouling on poly (lactic acid) hollow fiber membranes by blending with poly (lactic acid)– polyethylene glycol – poly (lactic acid) triblock copolymers. J Membr Sci 416:712–717

    Article  Google Scholar 

  11. Zhao W, Mou Q, Zhang X, Shi J, Sun S, Zhao C (2013) Preparation and characterization of sulfonated polyethersulfone membranes by facile approach. Eur Polym J 49:738–751

    Article  CAS  Google Scholar 

  12. Kim KY, Yang E, Lee MY, Chae KJ, Kim CM, Kim IS (2014) Polydopamine coating effects on ultrafiltration membrane to enhance power density and mitigate biofouling of ultrafiltration microbial fuel cells (UF-MFCs). Water Res 54:62–68

    Article  CAS  Google Scholar 

  13. Zhao Z, Zheng J, Wang M, Zhang H, Han CC (2012) High performance ultrafiltration membrane based on modified chitosan coating and electrospun nanofibrous PVDF scaffolds. J Membr Sci 394–395:209–217

    Article  Google Scholar 

  14. Xu Z, Huang X, Wan L (2009) Surface engineering of polymer membranes. Springer, New York

    Book  Google Scholar 

  15. Wavhal DS, Fisher ER (2003) Membrane surface modification by plasma-induced polymerization of acrylamide for improved surface properties and reduced protein fouling. Langmuir 19:79–85

    Article  CAS  Google Scholar 

  16. Kou RQ, Xu ZL, Deng HT, Liu ZM, Seta P, Xu Y (2003) Surface modification of microporous polypropylene membranes by plasma-induced graft polymerization of α-allylglucoside. Langmuir 19:6869–6875

    Article  CAS  Google Scholar 

  17. Maheswari P, Barghava P, Mohan D (2013) Preparation, morphology, hydrophilicity, and performance of poly (ether-ether-sulfone) incorporated cellulose acetate ultrafiltration membranes. J Polym Res 20:74–91

    Article  Google Scholar 

  18. Amirilargani M, Sabetghadam A, Mohammadi T (2012) Polyethersulfone/ polyacrylonitrile blend ultrafiltration membranes with different molecular weight of polyethylene glycol: preparation, morphology and antifouling properties. Polym Adv Technol 23:398–407

    Article  CAS  Google Scholar 

  19. Nie SQ, Ran F, He C, Zhao PF, Wei XH, Li J et al (2011) Synthesis of amphiphilic tri-block copolymerpoly(vinylpyrrolidone)-b-poly(methyl methacrylate)-b-poly vinylpyrrolidone for the modificationof polyethersulfone membrane. Chin Chem Lett 22:370–373

    Article  CAS  Google Scholar 

  20. Shen P, Moriya A, Rajabzadeh S, Maruyama T, Matsuyama H (2013) Improvement of the antifouling properties of poly (lactic acid) hollow fiber membranes with poly (lactic acid)–polyethylene glycol–poly (lactic acid) copolymers. Desalination 325:37–39

    Article  CAS  Google Scholar 

  21. Moghareh Abed MR, Kumbharkar SC, Groth AM, Li K (2013) Economical production of PVDF-g-POEM for use as a blend in preparation of PVDF based hydrophilic hollow fibre membranes. Sep Purif Technol 106:47–55

    Article  CAS  Google Scholar 

  22. Hester JF, Banerjee P, Won YY, Akthakul A, Acar MH, Mayes AM (2000) ATRP of amphiphilic graft copolymers based on pvdf and their use as membrane additives. Macromolecules 35:7652–7661

    Article  Google Scholar 

  23. Hester JF, Banerjee P, Mayes AM (1999) Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules 32:1643–1650

    Article  CAS  Google Scholar 

  24. Chen S, Lingyan L, Zhao C, Zheng JJ (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293

    Article  CAS  Google Scholar 

  25. Loh CH, Wang R (2012) Effects of additives and coagulant temperature on fabrication of high performance pvdf/pluronic f127 blend hollow fiber membranes via nonsolvent induced phase separation. Chin J Chem Eng 20(1):71–79

    Article  CAS  Google Scholar 

  26. Yi Z, Zhu LP, Xu YY, Li XL, Yu JZ, Zhu BK, F127-based multi-block copolymer additives with poly(N,N-dimethylamino-2-ethyl methacrylate) end chains: The hydrophilicity and stimuli-responsive behavior investigation in polyethersulfone membranes modification. J Membr Sci 364:34–42.

  27. Asatekin KS, Elimelech M, Mayes AM (2007) Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide)comb copolymer additives. J Membr Sci 298:136–146

    Article  CAS  Google Scholar 

  28. Kang S, Asatekin A, Mayes AM, Elimelech M (2007) Protein antifouling mechanisms of PAN UF membranes incorporating PAN-g-PEO additive. J Membr Sci 296:42–50

    Article  CAS  Google Scholar 

  29. Lohokare H, Bhole Y, Taralkar S, Kharul U (2011) Poly(Acrylonitrile) based ultrafiltration membranes: optimization of preparation parameters. Desalination 282:46–53

    Article  CAS  Google Scholar 

  30. Barroso T, Temtem M, Casimiro T, Aguiar-Ricardo A (2011) Antifouling performance of poly(acrylonitrile)-based membranes: from green synthesis to application. J Supercrit Fluids 56:312–321

    Article  CAS  Google Scholar 

  31. Jung B, Yoon JK, Kim B, Rhee HW (2005) Effect of crystallization and annealing on polyacrylonitrile membranes for ultrafiltration. J Membr Sci 246:67–76

    Article  CAS  Google Scholar 

  32. Wang ZG, Wan LS, Xu ZK (2007) Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. J Membr Sci 304:8–23

    Article  CAS  Google Scholar 

  33. Guo R, Hu C, Li B, Jiang Z (2007) Pervaporation separation of ethylene glycol/water mixtures through surface crosslinked PVA membranes: coupling effect and separation performance analysis. J Membr Sci 289:191–198

    Article  CAS  Google Scholar 

  34. Zhang Y, Li H, Li H, Li R, Xiao C (2006) Preparation and characterization of modified polyvinyl alcohol ultrafiltration membranes. Desalination 192:214–223

    Article  CAS  Google Scholar 

  35. Liu F, Xua YY, Zhu BK, Zhang F, Zhu LP (2009) Preparation of hydrophilic and fouling resistant poly(vinylidene fluoride) hollow fiber membranes. J Membr Sci 345:331–339

    Article  CAS  Google Scholar 

  36. Nishioka N, Matsumoto K, Kosai K (1983) Homogeneous graft copolymerization of vinyl monomers onto cellulose in a dimethyl sulfoxide-parafolmaldehyde solvent system. II characterization of graft copolymers. Polym J 15(2):153–158

    Article  CAS  Google Scholar 

  37. Srinivasan KSV (1998) Macromolecules: New frontiers: Proceedings of the IUPAC International Symposium on Advances in Polymer Science and Technology. Allied Publishers, Mumbai

    Google Scholar 

  38. Chen X, Su Y, Shen F, Wan Y (2011) Antifouling ultrafiltration membranes made from PAN-b-PEG copolymers: Effect of copolymer composition and PEG chain length. J Membr Sci 384:44–51

    Article  CAS  Google Scholar 

  39. Bhatt N, Gupta PK, Naithani S (2011) Ceric-induced grafting of acrylonitrile onto alpha cellulose isolated from lantana camara. Cellul Chem Technol 45(5–6):321–327

    CAS  Google Scholar 

  40. Gurdag G, Sarmad S (2013) Cellulose graft copolymers: synthesis, properties, and applications. Springer, Berlin Heidelberg

    Google Scholar 

  41. Tame A, Ndikontar MK, Ngamveng JN, Ntede HN, Mpon R, Njungab E (2011) Graft copolymerisation of acrylamide on carboxymethyl cellulose (CMC). Rasavan J Chem 4(1):1–7

    CAS  Google Scholar 

  42. Liu B, Chen C, Li T, Crittenden J, Chen Y (2013) High performance ultrafiltration membrane composed of pvdf blended with its derivative copolymer PVDF-g-PEGMA. J Membr Sci 445:66–75

    Article  CAS  Google Scholar 

  43. Mohammad AW, Hilal N, Pei LY, Amin NHM, Raslan R (2011) Atomic force microscopy as a tool for asymmetric polymeric membrane characterization. Sains Malaysiana 40(3):237–244

    CAS  Google Scholar 

  44. Hobbs C, Hong S, Taylor J (2006) Effect of surface roughness on fouling of RO and NF membranes during filtration of a high organic surficial groundwater. J Water Supply Res T 55(7–8):559–570

    Article  CAS  Google Scholar 

  45. Gohari RJ, Lau WJ, Matsuura T, Ismail AF (2013) Effect of surface pattern formation on membrane fouling and its control in phase inversion process. J Membr Sci 446:326–331

    Article  Google Scholar 

  46. Shi Q, Su Y, Zhao W, Li C, Hu Y, Jiang Z et al (2008) Zwitterionic polyethersulfone ultrafiltration membrane with superior antifouling property. J Membr Sci 319:271–278

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Ministry of Higher Education (MOHE), Malaysia for funding the research through Long-term Research Grant Scheme (LRGS,grant no. R.J130000.7837.4 L803) for the research work conducted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Ismail.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazri, N.A.M., Lau, W.J., Padaki, M. et al. A facile modification approach for polyacrylonitrile-based UF hollow fiber membrane utilizing polyacrylonitrile-g-poly(vinyl alcohol) graft copolymer. J Polym Res 21, 594 (2014). https://doi.org/10.1007/s10965-014-0594-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-014-0594-1

Keywords

Navigation