Skip to main content
Log in

Functional packaging materials: factors affecting the capacity and rate of water adsorption in desiccant composites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Ten different polymers were selected as possible matrices for zeolite-containing desiccant composites utilized in the preparation of functional packaging materials. Water uptake was determined at 100 % RH and the results were analyzed to identify factors influencing the capacity and rate of water adsorption. The results showed that the desiccant was able to adsorb a considerable amount of water in its free pores. The adsorption capacities of the composites depended linearly on the amount of desiccant present in the composite, but were independent of the type of polymer used. Water initially diffused rapidly into the composites, but this diffusion slowed over time and also with increasing desiccant content. The latter effect can be explained by the increase in the diffusion path as the zeolite content increases. The initial rate of diffusion depended solely on the specific free volume of the matrix, and this factor also strongly influenced the overall rate of water adsorption. However, the latter characteristic also depended on other factors, such as the dispersion of the desiccant in the matrix. Matrix type and zeolite content must be selected according to the task to be fulfilled; fast adsorption can only be achieved by using polymers with large free volumes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bauer EJ (2009) Pharmaceutical packaging handbook. Informa Healthcare USA, Inc., New York

    Book  Google Scholar 

  2. Ahvenainen R (2003) Novel food packaging techniques. Woodhead, Boca Raton

  3. Rooney ML (1995) Active food packaging. Blackie, London

  4. Brody AL, Strupinsky ER, Kline LR (2001) Active packaging for food applications. CRC, London. doi:10.1201/9781420031812.fmatt

  5. Summers L (1992) Intelligent packging. Centre for Exploitation of Science and Technology, London

    Google Scholar 

  6. Day BPF (2001) Active packaging—a fresh approach. J Brand Technol 1(1):32–41

    Google Scholar 

  7. Charles F, Sanchez J, Gontard N (2006) Absorption kinetics of oxygen and carbon dioxide scavengers as part of active modified atmosphere packaging. J Food Eng 72(1):1–7. doi:10.1016/j.jfoodeng.2004.11.006

    Article  CAS  Google Scholar 

  8. Byun Y, Darby D, Cooksey K, Dawson P, Whiteside S (2011) Development of oxygen scavenging system containing a natural free radical scavenger and a transition metal. Food Chem 124(2):615–619. doi:10.1016/j.foodchem.2010.06.084

    Article  CAS  Google Scholar 

  9. Busolo MA, Lagaron JM (2012) Oxygen scavenging polyolefin nanocomposite films containing an iron modified kaolinite of interest in active food packaging applications. Innov Food Sci Emerg Technol 16:211–217. doi:10.1016/j.ifset.2012.06.008

    Article  CAS  Google Scholar 

  10. Shirazi A, Cameron AC (1992) Controlling relative humidity in modified atmosphere packages of tomato fruit. Hortscience 27(4):336–339

    Google Scholar 

  11. Mahajan PV, Rodrigues FAS, Motel A, Leonhard A (2008) Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporous). Postharvest Biol Technol 48(3):408–414. doi:10.1016/j.postharvbio.2007.11.007

  12. Sandhya (2010) Modified atmosphere packaging of fresh produce: Current status and future needs. LWT Food Sci Technol 43(3):381–392. doi:10.1016/j.lwt.2009.05.018

    Article  CAS  Google Scholar 

  13. Allinson JG, Dansereau RJ, Sakr A (2001) The effects of packaging on the stability of a moisture sensitive compound. Int J Pharm 221(1–2):49–56. doi:10.1016/S0378-5173(01)00670-6

    Article  CAS  Google Scholar 

  14. Waterman KC, MacDonald BC (2010) Package selection for moisture protection for solid, oral drug products. J Pharm Sci 99(11):4437–4452. doi:10.1002/jps.22161

    Article  CAS  Google Scholar 

  15. García-García I, Taboada-Rodríguez A, López-Gomez A, Marín-Iniesta F (2013) Active packaging of cardboard to extend the shelf life of tomatoes. Food Bioprocess Technol 6(3):754–761. doi:10.1007/s11947-011-0759-4

    Article  Google Scholar 

  16. Coma V (2008) Bioactive packaging technologies for extended shelf life of meat-based products. Meat Sci 78(1–2):90–103. doi:10.1016/j.meatsci.2007.07.035

    Article  CAS  Google Scholar 

  17. Zema L, Sangalli ME, Maroni A, Foppoli A, Bettero A, Gazzaniga A (2010) Active packaging for topical cosmetic/drug products: a hot-melt extruded preservative delivery device. Eur J Pharm Biopharm 75(2):291–296. doi:10.1016/j.ejpb.2010.03.007

    Google Scholar 

  18. Boschetto DL, Lerin L, Cansian R, Pergher SBC, Di Luccio M (2012) Preparation and antimicrobial activity of polyethylene composite films with silver exchanged zeolite-Y. Chem Eng J 204–206:210–216. doi:10.1016/j.cej.2012.07.111

    Article  Google Scholar 

  19. Chen J, Brody AL (2013) Use of active packaging structures to control the microbial quality of a ready-to-eat meat product. Food Control 30(1):306–310. doi:10.1016/j.foodcont.2012.07.002

    Article  CAS  Google Scholar 

  20. Jacobsen C, Let MB, Nielsen NS, Meyer AS (2008) Antioxidant strategies for preventing oxidative flavour deterioration of foods enriched with n-3 polyunsaturated lipids: a comparative evaluation. Trends Food Sci Technol 19(2):76–93. doi:10.1016/j.tifs.2007.08.001

    Article  CAS  Google Scholar 

  21. Mexis SF, Badeka AV, Riganakos KA, Karakostas KX, Kontominas MG (2009) Effect of packaging and storage conditions on quality of shelled walnuts. Food Control 20(8):743–751. doi:10.1016/j.foodcont.2008.09.022

    Article  CAS  Google Scholar 

  22. Naveršnik K, Bohanec S (2008) Predicting drug hydrolysis based on moisture uptake in various packaging designs. Eur J Pharm Sci 35(5):447–456. doi:10.1016/j.ejps.2008.09.007

    Article  Google Scholar 

  23. Wong EH, Rajoo R (2003) Moisture absorption and diffusion characterisation of packaging materials––advanced treatment. Microelectron Reliab 43(12):2087–2096. doi:10.1016/S0026-2714(03)00378-0

    Article  Google Scholar 

  24. Ruthven DM (1984) Principles of adsorption and adsorption processes. Wiley, New York

    Google Scholar 

  25. Imre B, Keledi G, Renner K, Móczó J, Murariu M, Dubois P, Pukánszky B (2012) Adhesion and micromechanical deformation processes in PLA/CaSO4 composites. Carbohydr Polym 89(3):759–767. doi:10.1016/j.carbpol.2012.04.005

    Google Scholar 

  26. Ovoshchnikov DS, Glaznev IS, Aristov YI (2011) Water sorption by the calcium chloride/silica gel composite: The accelerating effect of the salt solution present in the pores. Kinet Catal 52(4):620–628. doi:10.1134/s0023158411040124

    Article  CAS  Google Scholar 

  27. Nji J, Li G (2008) A CaO enhanced rubberized syntactic foam. Compos Part A–Appl S 39(9):1404–1411. doi:10.1016/j.compositesa.2008.05.001

    Google Scholar 

  28. Spahis N, Dellali M, Mahmoudi H (2012) Synthesis and characterization of polymeric/activated carbon membranes. Procedia Eng 33:47–51. doi:10.1016/j.proeng.2012.01.1175

    Article  CAS  Google Scholar 

  29. Ragosta G, Abbate M, Musto P, Scarinzi G, Mascia L (2005) Epoxy-silica particulate nanocomposites: chemical interactions, reinforcement and fracture toughness. Polymer 46(23):10506–10516. doi:10.1016/j.polymer.2005.08.028

    Google Scholar 

  30. Liu Q, De Kee D, Gupta RK (2008) Models of moisture diffusion through vinyl ester/clay nanocomposites. AIChE J 54(2):364–371. doi:10.1002/aic.11374

    Article  CAS  Google Scholar 

  31. Kim H, Biswas J, Choe S (2006) Effects of stearic acid coating on zeolite in LDPE, LLDPE, and HDPE composites. Polymer 47(11):3981–3992. doi:10.1016/j.polymer.2006.03.068

    Article  CAS  Google Scholar 

  32. Mathiowitz E, Jacob JS, Jong YS, Hekal TM, Spano W, Guemonprez R, Klibanov AM, Langer R (2001) Novel desiccants based on designed polymeric blends. J Appl Polym Sci 80(3):317–327. doi:10.1002/1097-4628(20010418)80:3<317::aid-app1102>3.0.co;2-q

    Article  CAS  Google Scholar 

  33. Pehlivan H, Özmıhçı F, Tıhmınlıoǧlu F, Balköse D, Ülkü S (2003) Water and water vapor sorption studies in polypropylene–zeolite composites. J Appl Polym Sci 90(11):3069–3075. doi:10.1002/app.13046

    Article  CAS  Google Scholar 

  34. Aristov YI, Glaznev IS, Freni A, Restuccia G (2006) Kinetics of water sorption on SWS-1L (calcium chloride confined to mesoporous silica gel): influence of grain size and temperature. Chem Eng Sci 61(5):1453–1458. doi:10.1016/j.ces.2005.08.033

    Google Scholar 

  35. Gordeeva LG, Grekova AD, Krieger TA, Aristov YI (2009) Adsorption properties of composite materials (LiCl + LiBr)/silica. Microporous Mesoporous Mater 126(3):262–267. doi:10.1016/j.micromeso.2009.06.015

    Article  CAS  Google Scholar 

  36. Manek RV, Kunle OO, Emeje MO, Builders P, Rao GVR, Lopez GP, Kolling WM (2005) Physical, thermal and sorption profile of starch obtained from tacca leontopetaloides. Starch–Stärke 57(2):55–61. doi:10.1002/star.200400341

    Google Scholar 

  37. Mali S, Sakanaka LS, Yamashita F, Grossmann MVE (2005) Water sorption and mechanical properties of cassava starch films and their relation to plasticizing effect. Carbohydr Polym 60(3):283–289. doi:10.1016/j.carbpol.2005.01.003

    Article  CAS  Google Scholar 

  38. Sohn O, Kim D (2003) Theoretical and experimental investigation of the swelling behavior of sodium polyacrylate superabsorbent particles. J Appl Polym Sci 87(2):252–257. doi:10.1002/app.11360

    Article  CAS  Google Scholar 

  39. Yoshimura T, Uchikoshi I, Yoshiura Y, Fujioka R (2005) Synthesis and characterization of novel biodegradable superabsorbent hydrogels based on chitin and succinic anhydride. Carbohydr Polym 61(3):322–326. doi:10.1016/j.carbpol.2005.06.014

    Article  CAS  Google Scholar 

  40. Zhang J, Yuan K, Wang Y-P, Gu S-J, Zhang S-T (2007) Preparation and properties of polyacrylate/bentonite superabsorbent hybrid via intercalated polymerization. Mater Lett 61(2):316–320. doi:10.1016/j.matlet.2006.04.055

    Article  CAS  Google Scholar 

  41. Kono H, Fujita S (2012) Biodegradable superabsorbent hydrogels derived from cellulose by esterification crosslinking with 1,2,3,4-butanetetracarboxylic dianhydride. Carbohydr Polym 87(4):2582–2588. doi:10.1016/j.carbpol.2011.11.045

    Article  CAS  Google Scholar 

  42. Crank J, Park GS (1968) Diffusion in polymers. Academic, London

    Google Scholar 

  43. Bondi A (1964) van der Waals volumes and radii. J Phys Chem 68(3):441–451. doi:10.1021/j100785a001

    Google Scholar 

  44. van Krevelen DW, te Nijenhuis K (2009) Properties of polymers—their correlation with chemical structure; their numerical estimation and prediction from additive group contributions, 4th edn. Elsevier

  45. Morrel M, Cohen DT (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169

    Article  Google Scholar 

  46. Doolittle AK (1951) Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free–space. J Appl Phys 22(12):1471–1475

    Google Scholar 

  47. Fujita H (1968) In: Crank J, Park GS (eds) Diffusion in polymers. Academic, London, p 99

    Google Scholar 

  48. Lee WM (1980) Selection of barrier materials from molecular structure. Polymer Eng Sci 20(1):65–69. doi:10.1002/pen.760200111

    Article  CAS  Google Scholar 

  49. Pethrick RA (1997) Positron annihilation—a probe for nanoscale voids and free volume? Prog Polym Sci 22(1):1–47. doi:10.1016/S0079-6700(96)00023-8

    Google Scholar 

  50. Moise JC, Bellat JP, Méthivier A (2001) Adsorption of water vapor on X and Y zeolites exchanged with barium. Microporous Mesoporous Mater 43(1):91–101. doi:10.1016/S1387-1811(00)00352-8

    Article  CAS  Google Scholar 

  51. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci A Chem 1(5):929–942. doi:10.1080/10601326708053745

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are indebted to Levente Kovács and Dániel Bedő for their execution of the WVTR measurements. The research on heterogeneous polymer systems was financed by the National Scientific Research Fund of Hungary (OTKA grant nos. K 101124 and K 108934) and the research on functional packaging materials was partly funded by the former Süd-Chemie AG (now Clariant), Business Unit Masterbatches; we appreciate the support very much. One of the authors (KR) is also grateful for receiving a János Bolyai Research Scholarship from the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Renner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kenyó, C., Kajtár, D.A., Renner, K. et al. Functional packaging materials: factors affecting the capacity and rate of water adsorption in desiccant composites. J Polym Res 20, 294 (2013). https://doi.org/10.1007/s10965-013-0294-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0294-2

Keywords

Navigation