Skip to main content
Log in

Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Interpenetrating polymer networks (IPN) consisting of pH-sensitive carboxymethyl pullulan (CMP) and thermosensitive poly(N-isopropylacrylamide) (PNIPAAm) were synthesized through a two-step procedure by chemical cross-linking of NIPAAm in the presence of CMP, followed by additional reticulation of the polysaccharide. The hydrogels were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy and swelling measurements. Swelling properties of the hydrogels were studied at equilibrium, by investigating pH- and temperature-dependence, dynamic swelling ratio and pulsatile swelling-deswelling kinetics. It was found that IPN hydrogels responded to both temperature and pH changes and such stimuli-responsiveness was reversible. At pH 1.2 and temperature values lower than VPTT, the swelling ratios of IPN hydrogels are smaller than that of pure PNIPAAm because most of the carboxylic groups are protonated forming hydrogen bonds with other carboxylic or amide groups of PNIPAAm. Conversely, in phosphate buffer solutions at pH 7.4, the swelling ratios of IPN hydrogels are higher than that of pure PNIPAAm. In this case, the carboxylic groups of CMP are ionized; therefore, the hydrogen bonds are broken and the electrostatic repulsions lead to a more expanded network. The loading and release profiles of a model drug namely, diphenhydramine (DPH), were also evaluated. The results showed that the release rate of DPH was higher at pH 10 buffer solution than at pH 7.4 and 1.2, at 37 °C. In pseudo physiological conditions, DPH was quickly released from the hydrogel at 20 °C, and showed a sustained release profile at 37 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 2
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

APS:

ammonium persulfate

BIS:

N,N’-methylenebisacrylamide

CMP:

carboxymethyl pullulan

DPH:

diphenhydramine hydrochloride

ESEM:

environmental scanning electron microscopy

GA:

glutaraldehyde

IPN:

interpenetrating polymer network

LCST:

lower critical solution temperature

MCA:

monochloroacetic acid

NIPAAm:

N-isopropylacrylamide

P:

pullulan

PBS:

phosphate buffer at pH 7.4

TEMED:

N,N,N’,N’-tetramethylethylenediamine

VPTT:

volume phase transition temperature

References

  1. He C, Kim SW, Lee DS (2008) J Control Release 127:189–207

    Article  CAS  Google Scholar 

  2. Hoare TR, Kohane DS (2008) Polymer 49:1993–2007

    Article  CAS  Google Scholar 

  3. Schmaljohann D (2006) Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  Google Scholar 

  4. Doria-Serrano MC, Ruiz-Treviño FA, Rios-Arciga C, Hernández-Esparza M, Santiago P (2001) Biomacromolecules 2:568–574

    Article  CAS  Google Scholar 

  5. Serizawa T, Wakita K, Akashi M (2002) Macromolecules 35:10–12

    Article  CAS  Google Scholar 

  6. Bromberg LE, Ron ES (1998) Adv Drug Deliv Rev 31:197–221

    Article  CAS  Google Scholar 

  7. Park TG, Hoffman AS (1990) J Biomed Mater Res 24:21–38

    Article  CAS  Google Scholar 

  8. Takeuchi S, Omodaka I, Hasegawa K, Maeda Y, Kitano H (1993) Angew Makromol Chem 194:1991–1993

    Article  CAS  Google Scholar 

  9. Bao-Lin G, Qing-Yu G (2007) Carbohyd Res 342:2416–2422

    Article  Google Scholar 

  10. Schild HG (1992) Prog Polym Sci 17:163–249

    Article  CAS  Google Scholar 

  11. Wenceslau AC, dos Santos FG, Ramos ERF, Nakamura CV, Rubira AF, Muniz EC (2012) Mat Sci Eng C 32:1259–1265

    Article  CAS  Google Scholar 

  12. Jeong B, Gutowska A (2002) Trends Biotechnol 20:305–311

    Article  CAS  Google Scholar 

  13. Hu J, Zheng S, Xu X (2012) J Polym Res 19:9988–9996

    Article  Google Scholar 

  14. Xu XD, Wei H, Zhang XZ, Cheng SX, Zhuo RX (2007) J Biomed Mater Res A 81:418–426

    Google Scholar 

  15. Huffman AS, Afrassiabi A, Dong LC (1986) J Control Release 4:213–222

    Article  Google Scholar 

  16. Qiu Y, Park K (2001) Adv Drug Deliv Rev 53:321–339

    Article  CAS  Google Scholar 

  17. Strachotová B, Strachota A, Uchman M, Šlouf M, Brus J, Pleštil J, Matějka L (2007) Polymer 48:1471–1482

    Article  Google Scholar 

  18. Ebara M, Aoyagi T, Sakai K, Okano T (2001) J Polym Sci Pol Chem 39:335–342

    Article  CAS  Google Scholar 

  19. Zhang JT, Cheng SX, Zhou RX (2003) Colloid Polym Sci 281:580–583

    Article  CAS  Google Scholar 

  20. Zhang GQ, Zha LS, Zhou MH, Ma JH, Liang BR (2005) Colloid Polym Sci 283:431–438

    Article  CAS  Google Scholar 

  21. Zhang XZ, Lewis PJ, Chu CC (2005) Biomaterials 26:3299–3309

    Article  CAS  Google Scholar 

  22. Aguilar MR, Elvira C, Gallardo A, Vázquez B, Román JS (2007) In: Ashammakhi N, Reis R, Chiellini E (eds) Topics in tissue engineering. EXPERTISSUES, Helsinki

    Google Scholar 

  23. Zhao SP, Zhou F, Li L-Y (2012) J Polym Res 19:9944–9952

    Article  Google Scholar 

  24. Wallenfells K, Bender H, Keilich G, Bechtler G (1961) Angew Chem 73:245–246

    Article  Google Scholar 

  25. Leathers TD (2003) Appl Microbiol Biot 62:468–473

    Article  CAS  Google Scholar 

  26. Yamaoka T, Tabata Y, Ikada Y (1993) Drug Deliv 1:75–82

    Article  CAS  Google Scholar 

  27. Zhang XZ, Yang YY, Wang FJ, Cheng TS (2002) Langmuir 18:2013–2018

    Article  CAS  Google Scholar 

  28. Kimono T, Shibuya T, Isóbara S (1997) Food Chem Toxic 35:323–329

    Article  Google Scholar 

  29. Rekha MR, Sharma CP (2007) Trends Biomater Artif Organs 20:116–121

    Google Scholar 

  30. Xi K, Tabata Y, Uno K, Yoshimoto M, Kishida T, Sokawa Y, Ikada Y (1996) Pharm Res 13:1846–1850

    Article  CAS  Google Scholar 

  31. Hosseinkhani H, Aoyama T, Ogawa O, Tabata Y (2002) J Control Release 83:287–302

    Article  CAS  Google Scholar 

  32. Prajapati VD, Jani GK, Canda SM (2013) Carbohyd Polym 95:540–549

    Article  CAS  Google Scholar 

  33. Mitchell G, Wijnberg AC (1997) Starch/Stark 49:485–488

    Article  CAS  Google Scholar 

  34. Ngah WSW, Endud CS, Mayanar R (2002) React Funct Polym 50:181–190

    Article  CAS  Google Scholar 

  35. Thirumavalavan K, Manikkadan TR, Dhanasekar R (2009) Afr J Biotechnol 8:254–258

    CAS  Google Scholar 

  36. Gupta KC, Khandekar K (2003) Biomacromolecules 4:758–765

    Article  CAS  Google Scholar 

  37. Zeng F, Tong Z, Yang X (1997) Eur Polym J 33:1553–1556

    Article  CAS  Google Scholar 

  38. Guyomard A, Nysten B, Muller G, Glinel K (2006) Langmuir 22:2281–2287

    Article  CAS  Google Scholar 

  39. Alvarez-Lorenzo C, Concheiro A, Dubovik AS, Grinberg NV, Burova TV, Grinber VY (2005) J Control Release 102:629–641

    Article  CAS  Google Scholar 

  40. Fu G, Soboyejo WO (2010) Mat Sci Eng C 30:8–13

    Article  CAS  Google Scholar 

  41. Alvarez-Lorenzo C, Guney O, Oya T, Sakai Y, Kobayashi M, Enoki T, Takeoka Y, Ishibashi T, Kuroda K, Tanaka K, Wang G, Grosberg AY, Masamune S, Tanaka T (2000) Macromolecules 33:8693–8697

    Article  CAS  Google Scholar 

  42. Li G, Guo L, Chang X, Yang M (2012) Int J Biol Macrom 50:899–904

    Article  CAS  Google Scholar 

  43. Lipatov YS (2002) Prog Polym Sci 27:1721–1801

    Article  CAS  Google Scholar 

  44. De Moura MR, Aouada FA, Favaro SL, Radovanovic E, Rubira AF, Muniz EC (2009) Mat Sci Eng C 29:2319–2325

    Article  Google Scholar 

  45. Wang XH, Qiu XP, Wu C (1998) Macromolecules 31:2972–2976

    Article  CAS  Google Scholar 

  46. Grinberg VY, Dubovik AS, Kuznetsov DV, Grinberg NV, Grosberg AY, Tanaka T (2000) Macromolecules 33:8685–8692

    Article  CAS  Google Scholar 

  47. Ju HK, Kim SY, Lee YM (2001) Polymer 42:6851–6857

    Article  CAS  Google Scholar 

  48. Reis AV, Guilherme MR, Rubira AF, Muniz EC (2007) J Colloid Interf Sci 310:128–135

    Article  CAS  Google Scholar 

  49. Fundueanu G, Constantin M, Ascenzi P (2008) Biomaterials 29:2767–2775

    Article  CAS  Google Scholar 

  50. Fundueanu G, Constantin M, Esposito E, Cortesi R, Nastruzzi C, Menegatti E (2005) Biomaterials 26:4337–4347

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCCE-2011-2-0028.

M. Constantin acknowledges the financial support of the European Social Fund – “Cristofor I. Simionescu” Postdoctoral Fellowship Programme (ID POSDRU/89/1.5/S/55216), Sectoral Operational Programme Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marieta Constantin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asmarandei, I., Fundueanu, G., Cristea, M. et al. Thermo- and pH-sensitive interpenetrating poly(N-isopropylacrylamide)/carboxymethyl pullulan network for drug delivery. J Polym Res 20, 293 (2013). https://doi.org/10.1007/s10965-013-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0293-3

Keywords

Navigation