Skip to main content
Log in

High performance thermosets based on multifunctional intermediates containing allyl, maleimide and benzoxazine groups

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

High performance thermosets were prepared by thermally curing of multifunctional intermediates containing allyl, maleimide, furyl and benzoxazine rings. The multifunctional intermediates were obtained by cycloaddition reaction of 2,2′-bis(8-allyl-3-furfuryl-3,4-dihydro-2H-1,3-benzoxazinyl)isopropane or bis(3-furfuryl-3,4-dihydro-2H-1,3-benzoxazinyl)isopropane with 4,4′-bismaleimidodiphenylmethane in molar ratio of 1:1 and 1:2, in THF at reflux. The chemical structure of multifunctional intermediates was elucidated by FTIR and 1H-NMR spectroscopy and curing parameter by differential scanning calorimetry. The thermal analysis showed that decomposition of these materials takes place in two stages and DSC measurements of networks did not exhibit the glass transition temperature up to 300 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Scheme 4
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Ghosh NN, Kiskan B, Yagci Y (2007) Polybenzoxazines—new high performance thermosetting resins: synthesis and properties. Progr Polym Sci 32:1344–1391

    Article  CAS  Google Scholar 

  2. Yagci Y, Kiskan B, Ghosh NN (2009) Recent advancement on polybenzoxazine-a newly developed high performance thermoset. J Polym Sci A Polym Chem 47:5565–5576

    Article  CAS  Google Scholar 

  3. Demir KD, Kiskan B, Aydogan B, Yagci Y (2013) Thermally curable main-chain benzoxazine prepolymers via polycondensation route. React Funct Polym 73:346–359

    Article  CAS  Google Scholar 

  4. Su YC, Chang FC (2003) Synthesis and characterization of fluorinated polybenzoxazine material with low dielectric constant. Polymer 44:7989–7996

    Article  CAS  Google Scholar 

  5. Reghunadhan Nair CP (2004) Advances in addition-cure phenolic resins. Progr Polym Sci 29:401–498

    Article  Google Scholar 

  6. Lin CH, Chang SL, Hsieh CW, Lee HH (2008) Aromatic diamine-based benzoxazines and their high performance thermosets. Polymer 49:1220–1229

    Article  CAS  Google Scholar 

  7. Yang P, Gu Y (2011) Synthesis and curing behavior of a benzoxazine based on phenolphthalein and its high performance polymer. J Polym Res 18:1725–1733

    Article  CAS  Google Scholar 

  8. Brunovska Z, Lyon R, Ishida H (2000) Thermal properties of phthalonitrile functional polybenzoxazines. Thermochim Acta 357–358:195–203

    Article  Google Scholar 

  9. Yan C, Fan X, Li J, Shen SZ (2011) Synthesis and characterization of bisphenol a diphthalimide bisbenzoxazine monomers and the properties of their polybenzoxazines. J Appl Polym Sci 121:2778–2787

    Article  CAS  Google Scholar 

  10. Lu Y, Li M, Zhang Y, Hu D, Ke L, Xu W (2011) Synthesis and curing kinetics of benzoxazine containing fluorene and furan groups. Thermochim Acta 515:32–37

    Article  CAS  Google Scholar 

  11. Chaisuwan T, Ishida H (2010) Highly processible maleimide and nitrile functionalized benzoxazines for advanced composites applications. J Appl Polym Sci 117:2559–2565

    CAS  Google Scholar 

  12. Gao Y, Huang F, Zhou Y, Du L (2012) Synthesis and characterization of a novel acetylene- and maleimide-terminated benzoxazine and its high-performance thermosets. J Appl Polym Sci 128:340–346

    Article  Google Scholar 

  13. Cheng Y, Yang J, Jin Y, Deng D, Xiao F (2012) Synthesis and properties of highly cross-linked thermosetting resins of benzocyclobutene-functionalized benzoxazine. Macromolecules 45:4085–4091

    Article  CAS  Google Scholar 

  14. Guo H, Chen Z, Zhang J, Yang X, Zhao R (2012) Self-promoted curing phthalonitrile with high glass transition temperature for advanced composites. J Polym Res 19:9918

    Article  Google Scholar 

  15. Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichian K, Rimdusit S (2007) Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stab 92:1265–1278

    Article  CAS  Google Scholar 

  16. Rimdusit S, Ramsiri B, Jubsilp C, Dueramae I (2012) Characterizations of polybenzoxazine modified with isomeric biphenyltetracarboxylic dianhydrides. Express Polym Lett 6:773–782

    Article  CAS  Google Scholar 

  17. Wang YH, Chang CM, Liu YL (2012) Benzoxazine-functionalized multi-walled carbon nanotubes for preparation of electrically-conductive polybenzoxazines. Polymer 53:106–112

    Article  CAS  Google Scholar 

  18. Lin CW, Hsu SLC, Yang ACM (2012) Micro-drawing of glassy polybenzoxazole rigid rods and the molecular interactions with carbon nanotubes. Polymer 53:1951–1959

    Article  CAS  Google Scholar 

  19. Agag T, Tsuchiya H, Takeichi T (2004) Novel organic–inorganic hybrids prepared from polybenzoxazine and titania using sol–gel process. Polymer 45:7903–7910

    Article  CAS  Google Scholar 

  20. Yan C, Fan X, Li J, Shen SZ (2011) Study of surface-functionalized nano-SiO2/polybenzoxazine composites. J Appl Polym Sci 120:1525–1532

    Article  CAS  Google Scholar 

  21. Spontón M, Estenoz D, Lligadas G, Ronda JC, Galià M, Cádiz V (2012) Synthesis and characterization of a hybrid material based on a trimethoxysilane functionalized benzoxazine. J Appl Polym Sci 126:1369–1376

    Article  Google Scholar 

  22. Chandramohan A, Devaraju S, Vengatesan MR, Alagar M (2012) Octakis(dimethylsiloxypropylglycidylether)silsesquioxane (OG-POSS) reinforced 1,1-bis(3-methyl-4-hydroxymethyl)cyclohexane based polybenzoxazine nanocomposites. J Polym Res 19:9903

    Article  Google Scholar 

  23. Chozhan CK, Alagar M, Gnanasundaram P (2009) Synthesis and characterization of 1,1-bis(3-methyl-4-hydroxy phenyl)cyclohexane polybenzoxazine-organoclay hybrid nanocomposites. Acta Mater 57:782–794

    Article  CAS  Google Scholar 

  24. Cui HW, Kuo SW (2013) Nanocomposites of polybenzoxazine and exfoliated montmorillonite using a polyhedral oligomeric silsesquioxane surfactant and click chemistry. J Polym Res 20:114

    Article  Google Scholar 

  25. Ishida H, Allen DJ (1996) Mechanical characterization of copolymers based on benzoxazine and epoxy. Polymer 37:4487–4495

    Article  CAS  Google Scholar 

  26. Yang P, Wang X, Gu Y (2012) Copolymers of phenolphthalein-aniline-based benzoxazine and biphenyl epoxy: curing behavior and thermal and mechanical properties. J Polym Res 19:9901

    Article  Google Scholar 

  27. Santhosh Kumar KS, Reghunadhan Nair CP, Radhakrishnan TS, Ninan KN (2007) Bis allyl benzoxazine: synthesis, polymerisation and polymer properties. Eur Polym J 43:2504–2514

    Article  Google Scholar 

  28. Santhosh Kumar KS, Reghunadhan Nair CP, Sadhana R, Ninan KN (2007) Benzoxazine-bismaleimide blends: curing and thermal properties. Eur Polym J 43:5084–5096

    Article  Google Scholar 

  29. Ursache O, Gaina C, Gaina V, Musteata V (2012) High performance bismaleimide resins modified by novel allyl compounds based on polytriazoles. J Polym Res 19:9968

    Article  Google Scholar 

  30. Kremer F, Schoenhals A (2003) Broadband dielectric spectroscopy. Springer-Verlag, Berlin, Heidelberg

    Book  Google Scholar 

  31. Gaina V, Gaina C (2007) Bismaleimides and biscitraconimides with bisallyl groups. High Perform Polym 19:160–174

    Article  CAS  Google Scholar 

  32. Gaina V, Gaina C, Sava M (2001) Thermal characterization of polyaminobismaleimide prepolymers. Polym Plast Technol Eng 40:89–102

    Article  CAS  Google Scholar 

  33. Liu YL, Chou CI (2005) High performance benzoxazine monomers and polymers containing furan groups. J Polym Sci A Polym Chem 43:5267–5282

    Article  CAS  Google Scholar 

  34. Agag T, Takeichi T (2003) Synthesis and characterization of novel benzoxazine monomers containing allyl groups and their high performance thermosets. Macromolecules 36:6010–6017

    Article  CAS  Google Scholar 

  35. Kissinger HE (1957) Reaction kinetics in differential thermal analysis. Anal Chem 29:702–1706

    Article  Google Scholar 

  36. Shibata M, Teramoto N, Shimasaki T, Ogihara M (2011) High-performance bio-based bismaleimide resins using succinic acid and eugenol. Polym J 43:916–922

    Article  CAS  Google Scholar 

  37. Macedo PB, Moynihan CT, Bose R (1972) Role of ionic diffusion in polarization in vitreous ionic conductors. Phys Chem Glasses 13:171–179

    CAS  Google Scholar 

  38. Chisca S, Musteata VE, Sava I, Bruma M (2011) Dielectric behavior of some aromatic polyimide films. Eur Polym J 47:1186–1197

    Article  CAS  Google Scholar 

  39. Khazaka R, Locatelli ML, Diaham S, Bidan P, Dupuy L, Grosset G (2013) Broadband dielectric spectroscopy of BPDA/ODA polyimide films. J Phys D Appl Phys 46:65501

    Article  Google Scholar 

  40. Havriliak S, Negami S (1967) A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 8:161–210

    Article  CAS  Google Scholar 

  41. Havriliak S, Havriliak SJ (1997) Dielectric and mechanical relaxation in materials. Hanser, Cincinnati

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viorica Gaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaina, C., Ursache, O., Gaina, V. et al. High performance thermosets based on multifunctional intermediates containing allyl, maleimide and benzoxazine groups. J Polym Res 20, 263 (2013). https://doi.org/10.1007/s10965-013-0263-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0263-9

Keywords

Navigation