Skip to main content
Log in

Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of Polyether Imide (PEI)/Liquid Crystalline Polymer (LCP) blend system

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

This work analysed the effect of physical and chemical interactions between the modified mutiwalled carbon nanotubes (MWCNTs) and the Polyetherimide/Liquid crystalline polymer (PEI/LCP) blend matrix, on the dispersion of MWCNTs and deformation of LCP particles. Silicon Carbide (SiC) and TiO2 coated MWCNTs were prepared from polycarbosilane and titanium (IV) n- butoxide precursors, respectively, by sol–gel process to improve their dispersion in the polymer matrix. Formation of both was confirmed by X-Ray diffraction (XRD), Transmission Electron Microscope (TEM) and X-Ray photoelectron Spectroscopy (XPS) studies. Polyetherimide (PEI)/liquid crystalline polymer (LCP) blends with unmodified and modified MWCNTs were prepared by melt blending. TEM and Field Electron Scanning Electron microscope (FESEM) studies revealed better dispersion of modified MWCNT in the polymer matrix than the unmodified one. Rheological analysis of hybrid composite systems containing modified and unmodified MWCNT revealed that nano composite containing TiO2 coated MWCNT has the lowest viscosity and this is due to fibrillation of LCP. Superior thermal stability of modified MWCNT added composites was confirmed from thermo-gravimetric analysis (TGA). Dynamic mechanical thermal analysis (DMTA) and Differential Scanning Calorimetry (DSC) studies showed the variation in glass transition temperature (Tg) of the composites in presence of pure and modified MWCNT. Mechanical properties of nanocomposites with TiO2 coated MWCNTs were found to be higher than that of pure MWCNTs added nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Iijima S (1991) Nature 354:56

    Article  CAS  Google Scholar 

  2. Griffith AA (1920) Philos Trans R Soc A 221:163

    Article  Google Scholar 

  3. Weibull WJ (1951) J Appl Mech 293

  4. Liu J, Rinzler AG, Dai H, Hafner JH, Bradley RK, Boul PJ, Lu A, Iverson T, Shelimov K, Huffman CB, Macias FR, Shon YS, Lee TR, Colbert DT, Smalley RE (1998) Science 280:1253

    Article  CAS  Google Scholar 

  5. Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) J Am Chem Soc 122:2383

    Article  CAS  Google Scholar 

  6. Dujardin E, Ebbesen TW, Krishnan A, Treacy MMJ (1998) Adv Mater 10:611

    Article  CAS  Google Scholar 

  7. Vaccarini L, Goze C, Aznar R, Micholet V, Journet C, Bernier P (1999) Synth Met 103:2492

    Article  CAS  Google Scholar 

  8. Hirsch A, Vostrowsky O (2005) Top Curr Chem 245:193

    CAS  Google Scholar 

  9. Breuer O, Sundararaj U (2004) Polym Compos 25:630

    Article  CAS  Google Scholar 

  10. Gacitua W, Ballerini EA, Zhang AJ (2005) Maderas Ciencia y Tecnologıa 7:159

    Google Scholar 

  11. Bae SW, Kim K, Han YD, Kim SH, Joo J, Choi JH, Lee CJ (2009) Synth Met 159:2034

    Article  CAS  Google Scholar 

  12. Abdalla M, Dean D, Adibempe D, Nyairo E, Robinson P, Thompson G (2007) Polymer 48:5662

    Article  CAS  Google Scholar 

  13. Yuan WZ, Sun JZ, Dong Y, Haussler M, Yang F, Xu HP (2006) Macromolecules 39:8011

    Article  CAS  Google Scholar 

  14. Jiang L, Gao L, Sun J (2003) J Colloid Inter Sci 260:89

    Article  CAS  Google Scholar 

  15. Hu H, Yu A, Kim E, Zhou B, Itkis ME, Bekyarova E, Haddon RC (2005) J Phys Chem B 109:11520

    Article  CAS  Google Scholar 

  16. Chung TS (2001) CRC Press, London

  17. Demus D, Gray GW, Speiss HW, Goodby JW, Vill V (1998) Handbook of liquid crystals. Wiley-VCH, Weinheim

    Book  Google Scholar 

  18. Datta A, Baird DG (1995) Polymer 36:505

    Article  CAS  Google Scholar 

  19. Mukharjee M, Bose S, Nayak GC, Das CK (2010) J Polym Res 17:265

    Article  Google Scholar 

  20. He J, Bu W (1994) Polymer 35:5061

    Article  CAS  Google Scholar 

  21. Kim JY, Kim DK, Kim SH (2009) 45:316

  22. Lee MW, Hu X, Li L, Yue CY, Tam KC (2003) Polym Int 52:276

    Article  CAS  Google Scholar 

  23. Lee MW, Hu X, Li L, Yue CY, Tam KC, Cheong LY (2003) Comput Sci Technol 63:1921

    Article  CAS  Google Scholar 

  24. Chen P, Chen J, Zhang B, Zhang J, He J (2006) J Polym Sci B 44:10

    Google Scholar 

  25. Chen J, Chen P, Wu L, Zhang J, He J (2006) Polymer 47:5402

    Article  CAS  Google Scholar 

  26. Nayak GC, Rajasekar R, Das CK (2010) Compos: Part A 41:1662

    Article  Google Scholar 

  27. Nayak GC, Sahoo S, Rajasekar R, Das CK (2012) Compos: Part A 43:1242

    Article  CAS  Google Scholar 

  28. Bose S, Mukherjee M, Pal K, Nayak GC, Das CK Polym Adv Technol. doi:10.1002/pat.1425

  29. Huang BS, Chang FY (2010) J Nanopart Res 12:2503

    Article  CAS  Google Scholar 

  30. Georgios P, Wolfgang SM (2010) 162:163

  31. Katar SL, Labiosa AB, Plaud AE, Vargas EM, Fonseca L, Weiner BR, Morell G (2010) Nanoscale Res Lett 5:74

    Article  CAS  Google Scholar 

  32. Liu JW, Zhong DY, Xie FQ, Sun M, Wang EG, Liu WX (2001) Chem Phy Lett 348:357

    Article  CAS  Google Scholar 

  33. Zhuang P, Kyu T, White JL (1988) Polym Eng Sci 28:1095

    Article  CAS  Google Scholar 

  34. Siegmann A, Dagan A, Kenig S (1985) Polymer 26:1325

    Article  CAS  Google Scholar 

  35. Goel M, Singhal R, Nagpal AK, Kandpal LD (2001) Mater Manuf Process 16:427

    Article  CAS  Google Scholar 

  36. Wang D, Li Y, Xie X, Guo BH (2011) Polymer 52:191

    Article  CAS  Google Scholar 

  37. Nayak GC, Rajasekar R, Das CK (2010) J Mater Sci 46:165

    Google Scholar 

  38. Lee S, Hong SM, Seo Y, Park TS, Hwang SS (1994) Polymer 35:519

    Article  CAS  Google Scholar 

  39. Chatterjee A, Deopura BL (2006) J App Polym Sci 100:3574

    Article  CAS  Google Scholar 

  40. Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Macromol Rapid Commun 23:761

    Article  CAS  Google Scholar 

  41. Marosfoi BB, Szabo A, Marosi G, Tabuani D, Camino G, Pagliari S (2006) J Therm Anal Calorim 86:669

    Article  CAS  Google Scholar 

  42. Bose S, Mukharjee M, Das CK, Saxena AK (2010) Polym Compos 31:543

    CAS  Google Scholar 

  43. Eshaghi A, Pakshir M, Mozaffarinia R (2010) Mater Sci 33(4):365–369

    CAS  Google Scholar 

  44. Zhang L, Tam KC, Gan LH, Yue CY, Lam YC, Hu X (2003) J Appl Polym Sci 87:1484

    Article  CAS  Google Scholar 

  45. Lee MW, Hu X, Li L, Yue CY, Tam KC, Cheong LY (2003) Compos Sci Technol 63:1921

    Article  CAS  Google Scholar 

  46. Chen P, Chen J, Zhang B, Zhang J, He J (2006) J Polym Sci Part B 44:1020

    Article  CAS  Google Scholar 

  47. Saikrasun S, Limpisawasdi P, Amornsakchai T (2009) J Polym Res 16:443

    Article  CAS  Google Scholar 

  48. Sun J, Gao L (2006) J Electroceram 17:91

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We specially thank to UGC New Delhi, India, for granting the kind financial support for the research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chapal Kumar Das.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hatui, G., Das, C.K. Modification of CNT and its effect on thermo mechanical, morphological as well as rheological properties of Polyether Imide (PEI)/Liquid Crystalline Polymer (LCP) blend system. J Polym Res 20, 77 (2013). https://doi.org/10.1007/s10965-013-0077-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-013-0077-9

Keywords

Navigation