Skip to main content
Log in

Mechanical and aging resistance performance of acrylic sheets containing EPDM-graft-poly(styrene-co-methyl methacrylate)

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The addition of ethylene-propylene-diene rubber (EPDM) into acrylic sheets was expected to enhance their thermal and UV aging resistance for outdoor applications. According to the dissimilar polarity of EPDM and styrene (ST)/methyl methacrylate (MMA) monomer mixture (20/80% (w/w)) used for preparation of acrylic sheets, this research aimed to modify EPDM via graft copolymerization with ST and MMA to increase its compatibility. The graft copolymerization of ST and MMA at a ST/MMA ratio of 25/75% (w/w) onto EPDM was carried out in the solution polymerization initiated by benzoyl peroxide at 90 °C for 16 h, resulting in 88.1% grafting efficiency. The addition of 1.0–3.0% (w/w) of graft EPDM (GEPDM) into the acrylic sheets increased their impact strength (~ 17–22%), but decreased their flexural strength (~ 12–36%). However, their mechanical properties were improved after thermal and UV aging. Scanning electron microscopy (SEM) based analysis of the modified acrylic sheets revealed that the fracture surface shifted from brittle to ductile failure characteristics after modification. The thermogravimetric analysis results also exhibited that the addition of GEPDM improved the thermal and UV resistance of the modified acrylic sheets by increasing their initial decomposition temperature and activation energy of thermal decomposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Mathys Z, Burchill PJ (1997) Influence of location on the weathering of acrylic sheet materials. Polym Degrad Stabil 55:45–54

    Article  CAS  Google Scholar 

  2. Lalande L, Plummer CJG, Manson JAE, Gèrard P (2006) Microdeformation mechanism in rubber toughened PMMA and PMMA-based copolymer. Eng Fract Mech 73:2413–2426

    Article  Google Scholar 

  3. Mansour AF (2004) Photostability and optical parameters of copolymer styrene/MMA as a matrix for the dyes used in fluorescent solar collectors. Polym Test 23:247–252

    Article  CAS  Google Scholar 

  4. Methyl Methacrylate (MMA) Prices and Pricing Information (2011) http://www.icis.com/v2/chemicals/9076048/methyl-methacrylate/pricing.html. Accessed 18 Feb 2011.

  5. Styrene Prices and Pricing Information (2011) http://www.icis.com/v2/chemicals/9076471/Styrene/pricing.html. Accessed 18 Feb 2011.

  6. Singh H, Gupta NK (2010) Evaluation of properties in ABS/PA6 blends compatibilized by fixed weight ratio SAGMA copolymer. J Polm Res. doi:10.1007/s10965-010-9540-z

  7. Siddaramaiah P, Suresha B, Lee JH (2008) Mechanical and three-body abrasive wear behavior of PMMA/TPU blends. Mat Sci Eng A 492:486–490

    Article  Google Scholar 

  8. Kai S, Chen CY (2004) Mechanical properties and strain-rate effect of EVA/PMMA in situ polymerization blends. Eur Polym J 40:1239–1248

    Article  Google Scholar 

  9. Cangialosi D, McGrail PT, Emmerson G, Valenza A, Calderaro E, Spadaro G (2001) Properties and morphology of PMMA/ABN blends obtained via MMA in situ polymerization through γ-rays. Nucl Instrum Meth B 185:262–266

    Article  CAS  Google Scholar 

  10. Oommen Z, Thomas S, Premalatha CK, Kuriakose B (1997) Melt rheology behavior of natural rubber/poly(methyl methacrylate)/natural rubber-g-poly(methyl methacrylate) blends. Polymer 38:5611–5621

    Article  CAS  Google Scholar 

  11. Broska R, Billingham NC, Fearon PK (2008) Accelerating effect of poly(methyl methacrylate) on rubber oxidation, Part 1: A Chemiluminescence study. Polym Degrad Stabil 93:1100–1108

    Article  CAS  Google Scholar 

  12. Qu X, Shang S, Liu G, Zhang L (2002) Graft copolymerization of styrene and acrylonitrile onto EPDM. J Appl Polym Sci 86:428–432

    Article  CAS  Google Scholar 

  13. Wang XS, Luo N, Ying SK (1999) Synthesis of EPDM-g-PMMA through atom transfer radical polymerization. Polymer 40:4515–4520

    Article  CAS  Google Scholar 

  14. Botros SH, Tawfic ML (2006) Synthesis and characterization of MAH-g-EPDM compatibilized EPDM/NBR rubber blends. J Elastom Plast 38:349–365

    Article  CAS  Google Scholar 

  15. Fu X, Chen X, Wen R, He X, Shang X, Liao Z, Yang L (2007) Polyethylene-octane elastomer/starch blends: miscibility, morphology and mechanical properties. J Polym Res 14:297–304

    Article  CAS  Google Scholar 

  16. Zeng Z, Ren W, Xu C, Lu W, Zhang Y, Zhang Y (2010) Maleated natural rubber prepared through mechanochemistry and its coupling effects on natural rubber/cotton fiber composites. J Polym Res 17:213–219

    Article  CAS  Google Scholar 

  17. Arayapranee W, Prasassarakich P, Rempel GL (2004) Blends of poly(vinyl chloride) (PVC)/natural rubber-g-(styrene-co-methyl methacrylate) for improved impact resistance of PVC. J Appl Polym Sci 93:1666–1672

    Article  CAS  Google Scholar 

  18. Hinchiranan N, Suppaibulsuk B, Promprayoon S, Prasassarakich P (2007) Improving properties of modified acrylic sheet via addition of graft natural rubber. Mater Lett 61:3951–3955

    Article  CAS  Google Scholar 

  19. Suriyachai P, Kiatkamjornwong S, Prasassarakich P (2004) Natural rubber-g-glycidyl methcrylate/styrene as a compatibilizer in natural rubber/PMMA blends. Rubber Chem Technol 77:914–930

    Article  Google Scholar 

  20. Zeng Z, Wang L, Cai T, Zeng X (2004) Synthesis of high rubber styrene-EPDM-acrylonitrile graft copolymer and its toughening effect on SAN. J Appl Polym Sci 94:416–423

    Article  CAS  Google Scholar 

  21. Fu J, Wang L, Zhang A (2008) Synthesis of EPDM-graft-methyl mathacrylate and styrene and its toughening effect on MS resin. Polym Bull 60:405–416

    Article  CAS  Google Scholar 

  22. Tiptipakorn S, Damrongsakkul S, Ando S, Hemvichain K, Rimdusit S (2007) Thermal degradation behaviors of polybenzoxazine and silicon-containing polyimide blends. Polym Degrad Stabil 92:1265–1278

    Article  CAS  Google Scholar 

  23. Cho YS, Shim MJ, Kim SW (1998) Thermal degradation kinetics of PE by Kissinger equation. Mater Chem Phys 52:94–97

    Article  CAS  Google Scholar 

  24. Sánchez-Jimènez PE, Criado JM, Pèrez-Maqueda LA (2008) Kissinger kinetic analysis of data under different heating schedules. J Thermal Anal Calorim 94:427–432

    Article  Google Scholar 

  25. Man SHC, Hashim AS, Akil HM (2008) Studies on the curing behaviour and mechanical properties of styrene/methyl methacrylate grafted deproteinized natural rubber latex. J Polym Res 5:357–364

    Article  Google Scholar 

  26. ASTM International (2003) Characterization and failure analysis of plastics. ASM International Materials Park, Ohio

    Google Scholar 

  27. Shah V (2007) Handbook of plastics testing and failure analysis, 3rd edn. A John Wiley & Sons Ins., Publication, New Jersey

    Book  Google Scholar 

  28. Gong S, Bandyopadhyay S (2007) Mechanical properties and fracture surface morphologies in unnotched specimens of rubber-PMMA composites. J Mater Eng Perform 16:601–606

    Article  CAS  Google Scholar 

  29. Costa HM, Ramos VD, Rocha MCG (2006) Analysis of thermal properties and impact strength of PP/SRT, PE/EPDM and PP/SRT/EPDM mixtures in single screw extruder. Polym Test 25:498–503

    Article  Google Scholar 

  30. Choudhary V, Varma HS, Varma IK (1991) Effect of EPDM rubber on melt rheology, morphology and mechanical properties of polypropylene/HDPE (90/10) blend. Polymer 32:2541–2545

    Article  CAS  Google Scholar 

  31. Lee JK, Kim JS, Lim HJ, Lee KH, Jo SM, Ougizawa T (2006) Microphase separation and crystallization in mixture of polystyrene-poly(methyl methacrylate) diblock copolymer and poly(vinylidene fluoride). Polymer 47:5420–5428

    Article  CAS  Google Scholar 

  32. Gao Z, Kaneko T, Hou D, Nakada M (2004) Kinetics of thermal degradation of poly(methyl methacrylate) studied with the assistance of the fractional conversion at the maximum reaction rate. Polym Degrad Stabil 84:399–403

    Article  CAS  Google Scholar 

  33. Li T (1990) Photopolymerization of methyl methacrylate initiated by benzophenone/aromatic tertiary amines. Polym Bull 24:397–404

    Article  CAS  Google Scholar 

  34. Christov L, Georgiev G, Sideridou Karayannidou I, Karayannidis G, Varvoglis A (1991) Photopolymerization of methyl methacrylate and 2-(dimethylamino) ethyl methacrylate induced by diacetoxyiodobenzene in the presence of radical inhibitors. Polym Bull 26:617–620

    Article  Google Scholar 

  35. Wang W, Wu Q, Qu B (2003) Mechanical properties and structural characteristics of dynamically photocrosslinked PP/EPDM blends. Polym Eng Sci 43:1798–1805

    Article  CAS  Google Scholar 

  36. Park DJ, Ha CS, Cho WJ (1994) Synthesis and properties of methyl methacrylate-EPDM-styrene graft terpolymer. J Appl Polym Sci 54:763–770

    Article  CAS  Google Scholar 

  37. Chuai C, Almdal K, Lyngaae-Jørgensen J (2004) Thermal behavior and properties of polystyrene/poly(methyl methacrylate) blends. J Appl Polym Sci 91:609–620

    Article  CAS  Google Scholar 

  38. Kashiwagi T, Inaba A, Brown JE (1986) Effects of weak linkages on the thermal and oxidative degradation of poly(methyl methacrylates). Macromolecules 19:2160–2168

    Article  CAS  Google Scholar 

  39. Zhang FA, Lee DK, Pinnavaia TJ (2009) PMMA-mesocellular foam silica nanocomposites prepared through batch emulsion polymerization and compression molding. Polymer 50:4768–4774

    Article  CAS  Google Scholar 

  40. Lourenço E, Felisberti MI (2006) Thermal and mechanical properties of in situ polymerized PS/EPDM blends. Eur Polym J 42:2632–2645

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the co-funding of the Thailand Research Fund (TRF)-Master Research Grants (MAG-WII525S018), the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund), The National Research University Project of CHE, the Ratchadaphiseksomphot Endowment Fund (AM1024I) and the Thai Government Stimulus Package 2 (TKK 2555) under the Project for Establishment of Comprehensive Center for Innovative Food, Health Products and Agriculture (PERFECTA) for their financial support. Many thanks to Pan Asia Industrial Co., Ltd. for providing the chemicals and equipment throughout this project. The authors also wish to express their thanks to Dr. Robert Douglas John Butcher (Publication Counseling Unit, Faculty of Science, Chulalongkorn University) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Napida Hinchiranan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nuinu, P., Pivsa-Art, S. & Hinchiranan, N. Mechanical and aging resistance performance of acrylic sheets containing EPDM-graft-poly(styrene-co-methyl methacrylate). J Polym Res 19, 9784 (2012). https://doi.org/10.1007/s10965-011-9784-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-011-9784-2

Keywords

Navigation