Skip to main content
Log in

Synthesis of biodegradable material poly(lactic acid-co-glycerol) via direct melt polycondensation and its reaction mechanism

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

To further verify the forming mechanism of multi-core structure during the direct melt copolycondensation of lactic acid (LA) with the compounds containing multifunctional groups, the biodegradable material poly(lactic acid-co-glycerol) [P(LA-co-GL)] was synthesized as designed using L-lactic acid (L-LA) and glycerol (GL) as the starting materials. For the molar feed ratio n(LA)/n(GL) of 60/1, the optimal synthetic conditions were discussed. Using 0.3 wt% stannous oxide (SnO) as the catalyst, after the prepolymerization was carried out at 140 °C for 8 h, the melt copolymerization for 8 h at 160 °C gave the polymer with the biggest intrinsic viscosity ([η]) 0.76 dL•g−1. The copolymers P(LA-co-GL)s at different molar feed ratios were characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H-NMR), gel permeation chromatography (GPC), differential scanning calorimetry (DSC) and X-ray diffraction (XRD). Increasing the molar feed ratio n(LA)/n(GL), the weight-average molecular weight (Mw) didn’t increase all the time, but a peak of Mw was formed, which indeed validated the above special phenomenon during the direct melt copolycondensation of LA with the monomers containing multifunctional groups. However, the forming mechanism of multi-core copolymer was different when multihydroxyl alcohol (e.g. GL) was used as the monomer containing multifunctional groups. Because the multi-core structure was linked by the ether bonds with less reversibility in the reaction, the biggest Mw of copolymers was relatively lower. For GL with three terminal hydroxyls as the core, only when n(LA)/n(GL) was more than 100/1, the star-shaped polylactic acid (SPLA) containing one core could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Rasal RM, Janorkar AV, Hirt DE (2010) Prog Polym Sci 35:338

    Article  CAS  Google Scholar 

  2. Maharana T, Mohanty B, Negi YS (2009) Prog Polym Sci 34:99

    Article  CAS  Google Scholar 

  3. Konishi S, Yokoi T, Ochiai B, Endo T (2010) Polym Bull 64:435

    Article  CAS  Google Scholar 

  4. Sedlarik V, Kucharczyk P, Kasparkova V, Drbohlav J, Salakova A, Saha P (2010) J Appl Polym Sci 116:1597

    CAS  Google Scholar 

  5. Gao QW, Lan P, Shao HL, Hu XC (2002) Polym J 34:786

    Article  CAS  Google Scholar 

  6. Qian ZY, Li S, Zhang HL, Liu XB (2003) Colloid Polym Sci 281:869

    Article  CAS  Google Scholar 

  7. Zhou SB, Deng XM, Li XH (2004) J Appl Polym Sci 91:1848

    Article  CAS  Google Scholar 

  8. Moon SI, Deguchi K, Miyamoto M, Kimura Y (2004) Polym Int 53:254

    Article  CAS  Google Scholar 

  9. Slivniak R, Langer R, Domb AJ (2005) Macromol 38:5634

    Article  CAS  Google Scholar 

  10. Lee CM, Kim HS, Yoon JS (2005) J Appl Polym Sci 95:1116

    Article  CAS  Google Scholar 

  11. Matsudo K, Mihara T, Koide N (2005) Polym Prep Jpn 54:1266

    Google Scholar 

  12. Abe H, Tetsuka H, Doi Y (2005) Polym Prep Jpn 54:5243

    Google Scholar 

  13. Deng LD, Li AG, Yao CM, Sun DX, Dong AJ (2005) J Appl Polym Sci 98:2116

    Article  CAS  Google Scholar 

  14. Gong QX, Wang LQ, Tu KH (2006) Carbohydr Polym 64:501

    Article  CAS  Google Scholar 

  15. Wang ZY, Zhao YM, Wang F, Wang J (2006) J Appl Polym Sci 99:244

    Article  CAS  Google Scholar 

  16. Kim HS, Hwang MO, Kim MN, Yoon JS (2006) J Appl Polym Sci 100:466

    Article  CAS  Google Scholar 

  17. Du J, Fang YY, Zheng YB (2007) Polymer 48:5541

    Article  CAS  Google Scholar 

  18. Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:2654

    Article  CAS  Google Scholar 

  19. Duan JF, Du J, Zheng YB (2007) J Appl Polym Sci 103:3585

    Article  CAS  Google Scholar 

  20. Sokolsky-Papkov M, Domb AJ (2008) Polym Adv Technol 19:671

    Article  CAS  Google Scholar 

  21. Cohen-Arazi N, Katzhendler J, Kolitz M, Domb AJ (2008) Macromol 41:7259

    Article  CAS  Google Scholar 

  22. Tsuji H, Matsuoka H, Itsuno S (2008) J Appl Polym Sci 110:3954

    Article  CAS  Google Scholar 

  23. Sun ZJ, Wu L, Lu XL, Meng ZX, Zheng YF, Dong DL (2008) Appl Surf Sci 255:350

    Article  CAS  Google Scholar 

  24. Sun ZJ, Wu L, Huang W, Zhang XL, Lu XL, Zheng YF, Yang BF, Dong DL (2009) Mat Sci Eng C 29:178

    Article  CAS  Google Scholar 

  25. Li WD, Zeng JB, Li YD, Wang XL, Wang YZ (2009) J Polym Sci Part A Polym Chem 47:5898

    Article  CAS  Google Scholar 

  26. Zhai YL, Deng LD, Xing JF, Liu Y, Zhang Q, Dong AJ (2009) J Biomat Sci Polym Ed 20:923

    Article  CAS  Google Scholar 

  27. Zhang Y, Wang XL, Wang YZ, Qu MH (2009) J Macromol Sci Part A Pure Appl Chem 46:631

    Article  CAS  Google Scholar 

  28. Ding J, Chen SC, Wang XL, Wang YZ (2009) Ind Eng Chem Res 48:788

    Article  CAS  Google Scholar 

  29. Inkinen S, Stolt M, Södergård A (2010) Biomacromol 11:1196

    Article  CAS  Google Scholar 

  30. Akesson D, Skrifvars M, Seppala J, Turunen M, Martinelli A, Matic A (2010) J Appl Polym Sci 115:480

    Article  Google Scholar 

  31. Namkajorn M, Petchsuk A, Opaprakasit M, Opaprakasit P (2010) Express Polym Lett 4:415

    Article  CAS  Google Scholar 

  32. Michinobu T, Bito M, Tanimura M, Katayama Y, Masai E, Nakamura M, Otsuka Y, Ohara S, Shigehara K (2010) J Macromol Sci Part A Pure Appl Chem 47:564

    Article  CAS  Google Scholar 

  33. Miao PK, Wu DM, Zhao CE, Xu GL, Zeng K, Wang YP, Fu Q, Yang G (2010) E-polym No. 006

  34. Ye RR, Wang ZY, Yang K, Luo SH (2010) Des Monomers Polym 13:415

    CAS  Google Scholar 

  35. Wang ZY, Zhao HJ, Wang QF, Ye RR, David EF (2010) J Appl Polym Sci 117:1405

    CAS  Google Scholar 

  36. Wang ZY, Luo YF, Ye RR, Song XM (2011) J Polym Res (doi: 10.1007/s10965-010-9442-0)

  37. Xu YP, Li JH, Chen MQ, Ren JJ, Ni ZB, Liu XY (2010) Acta Polym Sin: 300

  38. Arvanitoyannis L, Nakayama A, Kawasaki N, Yamamoto N (1995) Polymer 36:2947

    Article  CAS  Google Scholar 

  39. Han DK, Hubbell JA (1996) Macromol 29:5233

    Article  CAS  Google Scholar 

  40. Han DK, Hubbell JA (1997) Macromol 30:6077

    Article  CAS  Google Scholar 

  41. Han DK, Park KD, Hubbell JA, Kim YH (1998) J Biomater Sci Polym Ed 9:667

    Article  CAS  Google Scholar 

  42. Ju YM, Ahn KD, Kim JM, Hubbell JA, Han DK (2003) Polym Bull 50:107

    Article  CAS  Google Scholar 

  43. Lee SH, Kim SH, Han YK, Kim YH (2001) J Polym Sci Part A Polym Chem 39:973

    Article  CAS  Google Scholar 

  44. Tsuji H, Miyase T, Tezuka Y, Saha SK (2005) Biomacromol 6:244

    Article  CAS  Google Scholar 

  45. Grijpma DW, Melchels FPW, Hou Q, Feijen J (2006) Mater Res Innovat 10:321

    CAS  Google Scholar 

  46. Zhang WA, Zheng SX (2007) Polym Bull 58:767

    Article  CAS  Google Scholar 

  47. Gou PF, Zhu WP, Shen ZQ (2008) J Polym Sci Part A Polym Chem 46:2108

    Article  CAS  Google Scholar 

  48. Zhao YM, Wang ZY, Yang F (2005) J Appl Polym Sci 97:195

    Article  CAS  Google Scholar 

  49. Moon SI, Lee CW, Miyamoto M, Kimura Y (2000) J Polym Sci Part A Polym Chem 38:1673

    Article  CAS  Google Scholar 

  50. Moon SI, Lee CW, Taniguchi I, Miyamoto M, Kimura Y (2001) Polymer 42:5059

    Article  CAS  Google Scholar 

  51. Moon SI, Kimura Y (2003) Polym Int 52:299

    Article  CAS  Google Scholar 

  52. Sayed FN, Grover V, Dubey KA, Sudarsan V, Tyagi AK (2011) J Colloid Interf Sci 353:445

    Article  CAS  Google Scholar 

  53. Ma YD, Huang LQ, Song CX, Zeng XW, Liu G, Mei L (2010) Polymer 51:5952

    Article  CAS  Google Scholar 

  54. Park SY, Han BR, Na KM, Han DK, Kim SC (2003) Macromol 36:4115

    Article  CAS  Google Scholar 

  55. Ray WC, Grinstaff MW (2003) Macromol 36:3557

    Article  CAS  Google Scholar 

  56. Yang F, Song FL, Pan YF, Wang ZY, Yang YQ, Zhao YM, Liang SZ, Zhang YM (2010) J Microencapsul 27:133

    Article  CAS  Google Scholar 

  57. Wang N, Wu XS, Lujan-Upton H, Donahue E, Siddiqui A (1997) J Biomater Sci Polym Ed 8:905

    Article  CAS  Google Scholar 

  58. Wang N, Wu XS (1998) J Biomater Sci Polym Ed 9:75

    Article  CAS  Google Scholar 

  59. Kim ES, Kim BC, Kim SH (2004) J Polym Sci Part B Polym Phys 42:939

    Article  CAS  Google Scholar 

  60. Ye RR, Wang ZY, Yang K, Li JX (2009) Chem 72:637

    CAS  Google Scholar 

  61. Luo YF, Wang ZY, Song XM, Mao ZZ, Zhao HJ (2008) Chin J Synth Chem 16:166

    CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to the financial support by Guangdong Provincial Natural Science Foundation of China (No. 5300082) and National Natural Science Foundation of China (No. 20772035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luo, SH., Wang, ZY., Mao, CX. et al. Synthesis of biodegradable material poly(lactic acid-co-glycerol) via direct melt polycondensation and its reaction mechanism. J Polym Res 18, 2093–2102 (2011). https://doi.org/10.1007/s10965-011-9619-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9619-1

Keywords

Navigation