Skip to main content
Log in

Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Electrospun microfibers with a variable ratio between polycaprolactone and polylactide homopolymers were prepared from chloroform/acetone solutions. Thermal properties of both as-processed and melt crystallized samples were studied. Time-resolved WAXD patterns were taken during heating runs in order to evaluate the initial crystallinity and changes occurred during cold crystallization. DSC and WAXD experiments clearly indicated that fiber orientation facilitated the crystallization of polylactide, especially when fibers had a high polycaprolactone content. Triclosan could be effectively loaded by electrospinning and was well mixed in the polycaprolactone and polylactide phases. SAXS patterns allowed inferring that both polymers were also well mixed in the electrospun fibers and that triclosan hindered the lamellar stacking of polycaprolactone. Thermal properties, crystallinities and fiber surface morphologies were also significantly modified by the incorporation of triclosan. The release of drug loaded samples into different mixtures of ethanol and Sörensen medium was evaluated and the different affinity between triclosan and the two studied homopolymers was demonstrated. In this way, it was possible to obtain a series of materials with tuned release behavior and tuned antibacterial effect. The biocompatibility of all triclosan loaded polymer mixtures was evaluated by studying cell adhesion and proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Boundriot U, Dersch R, Greiner A, Wendorff JH (2006) Artif Organs 30:779–785

    Google Scholar 

  2. Katti DS, Robinson KW, Ko FK, Laurencin CT (2004) J Biomed Mater Res B 70:286–296

    Article  Google Scholar 

  3. WO2007090102-A2 (2007) University California, invs: Li S, Patel S, Hashi C, Huang NF, Kurpinski K, Huang N; Chem Abstr 2007, 147, 243474

  4. Burger C, Hsiao BS, Chu B (2006) Annu Rev Mater Res 36:333–368

    Article  CAS  Google Scholar 

  5. Wang C, Cheng YW, Hsu CH, Chien HS, Tsou SH. J Polym Res. Published on line 17 February 2010

  6. Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, Greiner A (2001) Adv Mater 13:70–72

    Article  CAS  Google Scholar 

  7. Kim GH, Han H, Park JH, Kim WD (2007) Polym Eng Sci 47:707–717

    Article  CAS  Google Scholar 

  8. US20060094320-A1 (2006) Kimberly-Clark Worldwide Inc, invs: Chen F, Huang L, Lindsay JD, Lindsay J, Chen FJ; Chem Abstr 2006, 144, 434401

  9. WO2007024125-A1 (2007) University Ewha Ind Collaboration Found, invs: Lee SJ, Han S, Shim IK; Chem Abstr 2007, 146, 259095

  10. Zeng J, Xu X, Chen X, Liang Q, Bian X, Yang L, Jing X (2003) J Control Release 92:227–231

    Article  CAS  Google Scholar 

  11. Shin M, Yoshimoto H, Vacanti JP (2004) Tissue Eng 10:33–41

    Article  CAS  Google Scholar 

  12. Yoshimoto H, Shin YM, Terai H, Vacanti JP (2003) Biomaterials 24:2077–2082

    Article  CAS  Google Scholar 

  13. Khil MS, Cha DI, Kim HY, Kim IS, Bhattarai N (2003) J Biomed Mater Res B: App Biomater 67:675–681

    Article  Google Scholar 

  14. Lee KH, Kim HY, Khil MS, Ra YM, Lee DR (2003) Polymer 44:1287–1294

    Article  CAS  Google Scholar 

  15. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM (2005) J Biomed Mater Res B Appl Biomater 72:156–165

    Article  Google Scholar 

  16. Luong-Van E, Grondahl L, Chua KN, Leong KW, Nurcombe V, Cool SM (2006) Biomaterials 27:2042–2050

    Article  CAS  Google Scholar 

  17. WO2005123995A1 (2005) invs: Lee JR, Jee SY, Kim HJ, Hong YT, Kim S, Park SJ; Chem Abstr 2005, 144, 89618

  18. WO07092303A2 (2007) invs: Smith DJ, Ring H; Chem. Abstr. 2007, 147, 279250.

  19. Chen HS, Tsai CH, Yang MC. J Polym Res. Published on line 31 March 2010

  20. Xin Y, Huang Z, Jiang Z, Che L, Sun M, Wang C, Liu S. J Polym Res. Published on line 27 April 2010

  21. Wu Y, Li M, Gao H (2009) J Polym Res 16:11–18

    Article  CAS  Google Scholar 

  22. Jones RD, Jampani HB, Newman JL, Lee AS (2000) Am J Infect Control 28:184–196

    Article  CAS  Google Scholar 

  23. Kockicsh S, Rees GD, Young SA, Tsiboukis J, Smart JD (2003) J Pharm Sci 9:1614–1623

    Article  Google Scholar 

  24. Kockisch S, Rees GD, Tsibouklis J, Smart JD (2005) Eur J Pharm Biopharm 59:207–216

    Article  CAS  Google Scholar 

  25. Maestrelli F, Mura P, Alonso MJ (2004) J Microencapsul 21:857–864

    Article  CAS  Google Scholar 

  26. Rueda DR, García-Gutiérrez MC, Nogales A, Capitán MJ, Ezquerra TA, Labrador A, Fraga E, Beltrán D, Juanhuix J, Herranz JF, Bordas J (2006) Rev Sci Instrum 77, Art. No. 033904 Part 1

  27. http://www.ccp13.ac.uk/software/program/corfunc/corfunc.htm

  28. Zeng J, Chen X, Liang Q, Xu X, Ping X (2004) Macromol Biosci 4:1118–1125

    Article  CAS  Google Scholar 

  29. Chatani Y, Okita T, Tadokoro H, Yamashita Y (1970) Polym J 1:555–562

    Article  CAS  Google Scholar 

  30. Iwata T, Doi Y (2002) Polym Int 51:852–858

    Article  CAS  Google Scholar 

  31. de Santis P, Kovacs AJ (1968) Biopolymers 6:299–306

    Article  Google Scholar 

  32. Hoogsteen W, Postema AR, Pennings AJ, ten Brinke G, Zugenmaier P (1990) Macromolecules 23:634–642

    Article  CAS  Google Scholar 

  33. Vonk CG, Kortleve G (1967) Kolloid Z Z Polym 220:19–24

    Article  CAS  Google Scholar 

  34. Vonk CG (1975) J Appl Cryst 8:340–341

    Article  Google Scholar 

  35. Varelas CG, Dixon DG, Carol S (1995) J Control Release 34:185–192

    Article  CAS  Google Scholar 

  36. Gibaldi M, Feldman S (1967) J Pharm Sci 56:1238–1242

    Article  CAS  Google Scholar 

  37. Wagner JG (1969) J Pharm Sci 58:1253–1257

    Article  CAS  Google Scholar 

  38. Higuchi T (1961) J Pharm Sci 50:874–879

    Article  CAS  Google Scholar 

  39. Higuchi T (1963) J Pharm Sci 52:1145–1149

    Article  CAS  Google Scholar 

  40. Baker R (1987) Controlled release of biologically active agents. Wiley, New York, Ch. 4

    Google Scholar 

  41. Zurita R, Puiggalí J, Rodríguez-Galán A (2006) Macromol Biosci 6:58–69

    Article  CAS  Google Scholar 

  42. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318–1322

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by CICYT and FEDER grants (MAT2009-11503). We are grateful to Drs. François Fauth and Ana Labrador of the CRG BM16 beamline staff of CELLS (Consortium for the Exploitation of the Synchrotron Light Laboratory). We are also grateful to Dr. Trifon Trifonov for FIB micrographs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Puiggalí.

Rights and permissions

Reprints and permissions

About this article

Cite this article

del Valle, L.J., Camps, R., Díaz, A. et al. Electrospinning of polylactide and polycaprolactone mixtures for preparation of materials with tunable drug release properties. J Polym Res 18, 1903–1917 (2011). https://doi.org/10.1007/s10965-011-9597-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-011-9597-3

Keywords

Navigation