Skip to main content
Log in

Exploring the effects of non-solvent concentration, jet-stretching and hot-drawing on microstructure formation of poly(acrylonitrile) fibers during wet-spinning

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

The simultaneous effects of non-solvent concentration in the spinning dope, jet-stretching and hot-drawing on porosity, morphology development and mechanical properties of wet-spun poly(acrylonitrile) fibers were studied. Addition of non-solvent to the spinning dope increased dope viscosity, the entanglement density of the polymeric solution and the number of entanglements per chain. Drawability of the as-spun fiber depended on the number of entanglements per polymer chain. Therefore, addition of non-solvent improved or spoiled drawability of the wet-spun fibers based on the concentration of the initial spinning dope. Hot-drawing and jet-stretching did not affect the fraction of nanovoids but shifted their size distribution towards smaller values. However, hot-drawing was more effective in reducing the overall porosity of the fibers in comparison with jet-stretching. Fiber tenacity increased when overall porosity decreased. Finally, strength-diameter correlation showed good agreement with the Griffith’s theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hou C, Qu R, Wang C, Ying L (2006) J Appl Polym Sci 101:3616–3619

    Article  CAS  Google Scholar 

  2. Bajaj P, Sen K, Bahrami SH (1996) J Macromol Sci Macromol Chem Phys 36:1–76

    Google Scholar 

  3. Bahrami SH, Bajaj P, Sen K (2003) J Appl Polym Sci 89:1825–1837

    Article  CAS  Google Scholar 

  4. Bajaj P, Sreekumar TV, Sen K (2002) J Appl Polym Sci 86:773–787

    Article  CAS  Google Scholar 

  5. Mikolajczyk T, Bogun M, Blazewicz M, Piekarczyk I (2006) J Appl Polym Sci 100:2881–2888

    Article  CAS  Google Scholar 

  6. Masson JC (1995) Acrylic fiber technology and application. Marcel Decker, New York

    Google Scholar 

  7. Chen J, Wang C, Dong X, Liu H (2006) J Polym Res 13:515–519

    Article  CAS  Google Scholar 

  8. Wang YX, Wang CG, Yu MJ (2007) J Appl Polym Sci 104:3723–3729

    Article  CAS  Google Scholar 

  9. Arbab S, Noorpanah P, Mohammadi N, Soleimani M (2008) J Appl Polym Sci 109:3461–3469

    Article  CAS  Google Scholar 

  10. Arbab S, Mohammadi N, Noorpanah P (2008) e-Polymers 080

  11. Arbab S, Mohammadi N, Noorpanah P (2008) Iran Polym J 17:227–235

    CAS  Google Scholar 

  12. Liu W, Cao G (2004) J Appl Polym Sci 93:956–960

    Article  CAS  Google Scholar 

  13. Salem DR (2001) Structure formation in polymeric fibers. Hanser, Munich

    Google Scholar 

  14. Smolders CA, Reuvers AJ, Boom RM, Wienk IM (1992) J Membr Sci 73:259–275

    Article  CAS  Google Scholar 

  15. Li Z, Ren J, Fene AJ, Li DF, Wong FS (2006) J Membr Sci 279:601–607

    Article  CAS  Google Scholar 

  16. Sperling LH (2006) Introduction to physical polymer science. Wiley, New York, Chapter 4

    Google Scholar 

  17. Gonzalez-Leon JA, Mayes AM (2003) Macromolecules 36:2508–2515

    Article  CAS  Google Scholar 

  18. Lin DJ, Chang CL, Lee CK, Cheng LP (2006) Eur Polym J 42:356–367

    Article  CAS  Google Scholar 

  19. Lin DJ, Chang CL, Lee CK, Cheng LP (2006) Eur Polym J 42:2407–2418

    Article  CAS  Google Scholar 

  20. Boom RM, van de Boomgard TH, Smolders CA (1994) J Membr Sci 90:231–249

    Article  CAS  Google Scholar 

  21. Gupta B, Revagada N, Anjum N, Atthoff B, Hilborn J (2006) J Appl Polym Sci 100:1239–1246

    Article  CAS  Google Scholar 

  22. Gupta B, Revagada N, Anjum N, Atthoff B, Hilborn J (2006) J Appl Polym Sci 101:3774–3780

    Article  CAS  Google Scholar 

  23. Sawai D, Kanamoto T, Yamazaki H, Hisatani K (2004) Macromolecules 37:2839–2846

    Article  CAS  Google Scholar 

  24. Bird B, Steward WE, Lightfoot EN (2002) Transport phenomena, 2nd edn. Wiley, New York

    Google Scholar 

  25. Chou WL, Yang MC (2005) J Membr Sci 250:259–267

    Article  CAS  Google Scholar 

  26. Arbab S, Noorpanah P, Mohammadi N, Zeinolebadi A (2010) Submitted to Polymer Bulletin

  27. Srnook J, Flinterman M, Pennings AJ (1980) Polym Bull 2:775–783

    Google Scholar 

  28. Hoogsteen W, Kormelink H, Eshuis G, ten Brinke G, Pennings AJ (1988) J Mater Sci 23:3467–3474

    Article  CAS  Google Scholar 

  29. Jian T, Shyu WD, Lin YT, Chen KN, Yeh JT (2003) Polym Eng Sci 43:1765–1777

    Article  CAS  Google Scholar 

  30. de Gennes PG (1991) Scaling concepts in polymer physics. Cornell University Press, New York, Chapter 4

    Google Scholar 

  31. Radishevslii MB, Serkov AT, Budnitskii G, Medvedev VA, Zlatoustova LA (2005) Fiber Chem 37:327–331

    Article  Google Scholar 

  32. Dutriez C, Satoh K, Kamigaito M, Yokoyama H (2007) Macromolecules 40:7433–7436

    Article  CAS  Google Scholar 

  33. Wulff M (2004) Thermochim Acta 419:291–294

    Article  CAS  Google Scholar 

  34. Iza M, Woerly S, Danumah C, Kaliaguine S, Bousmina M (2000) Polymer 41:5885–5893

    Article  CAS  Google Scholar 

  35. Griffith AA (1920) Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahram Arbab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arbab, S., Noorpanah, P., Mohammadi, N. et al. Exploring the effects of non-solvent concentration, jet-stretching and hot-drawing on microstructure formation of poly(acrylonitrile) fibers during wet-spinning. J Polym Res 18, 1343–1351 (2011). https://doi.org/10.1007/s10965-010-9537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9537-7

Keywords

Navigation