Skip to main content
Log in

Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

In the present paper, three ammonium salts namely, tetraethylammonium bromide (TEAB), tetrabutylammonium bromide (TBAB), and cetyltrimethylammonium bromide (CTAB) were employed to prepare organoclay by cation exchange process. Polystyrene (PS) /clay nanocomposites were prepared by melt blending using commercial nanoclay and organoclays prepared using above mentioned salts. X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis indicated that the modified clays were intercalated and/or exfoliated into the polystyrene matrix to a higher extent than the commercial nanoclay. Further, amongst the modified organoclays, TBAB modified clay showed maximum intercalation of clay layers and also exfoliation to some extent into the polystyrene matrix. TEM micrograph exhibited that TBAB modified clay had the best nanoscale dispersion with clay platelet thickness of ∼6–7 nm only. The mechanical properties of the nanocomposites such as tensile, flexural and izod impact strength were measured and analyzed in relation to their morphology. We observed a significant improvement in the mechanical properties of polystyrene/clay nanocomposites prepared with modified clays as compared to commercial organoclay, which followed the order as; PS/TBAB system > PS/CTAB system > PS/TEAB system. Thermogravimetric analysis (TGA) demonstrated that T10, T50 and Tmax were more in case of polystyrene nanocomposites prepared using modified organoclays than nanoclay [nanolin DK4] and maximum being in the case of PS/CTAB system. The results of Differential Scanning Calorimetry (DSC) confirmed that the glass transition temperature of all the nanocomposites was higher as compared to neat polystyrene. The nanocomposites having 2% of TBAB modified clay showed better oxygen barrier performance as compared to polystyrene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Bhiwankar NN, Weiss RA (2006) Polymer 47:6684–6691

    Article  CAS  Google Scholar 

  2. Messersmith PB, Giannelis EP (1994) Chem Mater 6:1719–1725

    Article  CAS  Google Scholar 

  3. Wang MS, Pinnavaia TJ (1994) Chem Mater 6:468–474

    Article  CAS  Google Scholar 

  4. Hasegawa N, Okamoto H, Kawasumi M, Usuki A (1999) J Appl Polym Sci 74:3359–3364

    Article  CAS  Google Scholar 

  5. Burmistr MV, Sukhyy KM, Shilov VV, Pissis P, Spanoudaki A, Sukha IV, Tomilo VI, Gomza YP (2005) Polymer 46:12226–12232

    Article  CAS  Google Scholar 

  6. Su S, Jiang DD, Wilkie CA (2004) Polym Degrad Stab 84:269–277

    Article  CAS  Google Scholar 

  7. Su S, Wilkie CA (2003) J Polym Sci Part A: Polym Chem 41:1124–1135

    Article  CAS  Google Scholar 

  8. Kong Q, Lv R, Zhang S (2008) J Polym Res 15:453–458

    Article  CAS  Google Scholar 

  9. Dazhu C, Haiyang Y, Pingsheng H, Weian Z (2005) Compos Sci Technol 65:1593–1600

    Article  Google Scholar 

  10. Lan T, Kaviratna PD, Pinnavaia TJ (1994) Chem Mater 6:573–575

    Article  CAS  Google Scholar 

  11. Chen G, Liu S, Chen S, Qi Z (2001) Macromol Chem Phys 202:1189–1193

    Article  CAS  Google Scholar 

  12. Essawy HA, Badran AS, Youssef AM, Hakim A (2004) Macromol Chem Phys 205:2366–2370

    Article  Google Scholar 

  13. He J, Shen Y, Evans DG (2008) Microporous Mesoporous Mater 109:73–83

    Article  CAS  Google Scholar 

  14. Ren J, Casanueva BF, Mitchell CA, Krishnamoorti R (2003) Macromolecules 36:4188–4194

    Article  CAS  Google Scholar 

  15. Morgan AB, Harris JD (2004) Polymer 45:8695–8703

    Article  CAS  Google Scholar 

  16. Zha W, Choi S, Lee KM, Han CD (2005) Macromolecules 38:8418–8429

    Article  CAS  Google Scholar 

  17. Shi S, Zhang L, Li J (2009) J Polym Res 16:395–399

    Article  CAS  Google Scholar 

  18. Chiu F, Chu P (2006) J Polym Res 13:73–78

    Article  CAS  Google Scholar 

  19. Dimitry QIH, Abdeen ZI, Ismail EA, Saad ALG (2009) J Polym Res. doi:10.1007/s10965-009-9371-Y

  20. Turri S, Alborghetti L, Levi M (2008) J Polym Res 15:365–372

    Article  CAS  Google Scholar 

  21. Mirmohseni A, Zavareh S (2010) J Polym Res 17:191–201

    Article  CAS  Google Scholar 

  22. Dennis HR, Hunter DL, Chang D, Kim S, White JL, Cho JW (2001) Polymer 42:9513–9522

    Article  CAS  Google Scholar 

  23. Nshuti C, Wilkie CA (2007) Polym Degrad Stab 92:1803–1812

    Article  Google Scholar 

  24. Mukherji M, Bose S, Nayak GC, Das CK (2010) J Polym Res 17:265–272

    Article  Google Scholar 

  25. As’habi L, Jafari SH, Khonakdar HA, Baghaei B (2010) J Polym Res. doi:10.1007/s10965-010-9407-3

  26. Chow WS, Ooi KH (2007) Malaysian Polym J 2:1–9

    Google Scholar 

  27. Frankowski DJ, Capracotta MD, Martin JD, Khan SA, Spontak RJ (2007) Chem Mater 19:2757–2767

    Article  CAS  Google Scholar 

  28. Gilman JW, Awad WH, Davis RD, Shields J, Harris RH Jr, Davis C, Morgan AB, Sutto TE, Callahan J, Trulove PC, Dulong HC (2002) Chem Mater 14:3776–3785

    Article  CAS  Google Scholar 

  29. Stretz HA, Paul DR (2006) Polymer 47:8527–8535

    Article  CAS  Google Scholar 

  30. Ishida H, Campbell S, Blackwell J (2000) Chem Mater 12:1260–1267

    Article  CAS  Google Scholar 

  31. Li LY, Li CY, Ni CY, Rong LX, Hsiao B (2007) Polymer 48:3452–3460

    Article  CAS  Google Scholar 

  32. Marales-Teyssier O, Sanchez-Valdes S, Ramos-de Valle LF (2006) Macromol Mater Eng 291:1547–1555

    Article  Google Scholar 

  33. Gryshchuk O, Karger-Koesis J, Thomann R, Konya Z, Kiriesi J (2006) Compos Part A 37:1252–1259

    Article  Google Scholar 

  34. Ghose S, Watson KA, Delozuer DM, Working DC, Siochi EJ, Connell JW (2006) Compos Part A 37:465–475

    Article  Google Scholar 

  35. Mrozek RA, Kim BS, Holmberg VC, Taton TA (2003) Nano Lett 3:1665–1669

    Article  CAS  Google Scholar 

  36. Bliznyuk VN, Singamaneni S, Sangford RL, Chiappetta D, Crooker B, Shibaev PV (2006) Polymer 47:3915–3921

    Article  CAS  Google Scholar 

  37. Zhao B, Hu H, Haddon RC (2004) Adv Funct Mater 14:71–76

    Article  CAS  Google Scholar 

  38. Ago H, Petritseh K, Shaffer MSP, Windle AH, Friend RH (1999) Adv Mater 11:1281–1285

    Article  CAS  Google Scholar 

  39. Sonawane S, Chaudhari P, Ghodke S, Ambade S, Gulig S, Mirikar A, Bane A (2008) Ultrason Sonochem 15:1033–1037

    Article  CAS  Google Scholar 

  40. Garcia-Lopez D, Gobernado-mitre I, Fernandez JF, Merin JC, Paslor JM (2005) Polymer 46:2758–2765

    Article  CAS  Google Scholar 

  41. Dong Y, Bhattacharyya D (2008) Composites: Part A 39:1177–1191

    Article  Google Scholar 

  42. Brostow W, Hagg Lobland HE (2008) Predicting wear from mechanical properties of thermoplastic polymers. Polym Eng Sci 48:1982–1985

    Article  CAS  Google Scholar 

  43. Rabello M (2000) Aditivacao de polimeros, Artliber, Sao Paulo, pp 242–247

  44. Maiti SN, Singh G, Ibrahim MN, Appl J (2003) Polym Sci 87:1511–1518

    CAS  Google Scholar 

  45. Osman MA, Atallah A, Schweizer T, Ottinger HC (2004) J Rheol 48:1167–1184

    Article  CAS  Google Scholar 

  46. Mishra S, Sonawane S, Mukherji A, Mruthyun-jaya HC (2006) J Appl Polym Sci 100:4190–4196

    Article  CAS  Google Scholar 

  47. Brostow W, Gorman BP, Olea-Mejia O (2007) Mater Lett 61:1333–1336

    Article  CAS  Google Scholar 

  48. Zhelezny L, Kobylyansky Y, Mishchuk O (2007) Chem Technol 1:97–101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Choudhary.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arora, A., Choudhary, V. & Sharma, D.K. Effect of clay content and clay/surfactant on the mechanical, thermal and barrier properties of polystyrene/organoclay nanocomposites. J Polym Res 18, 843–857 (2011). https://doi.org/10.1007/s10965-010-9481-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10965-010-9481-6

Keywords

Navigation