Skip to main content
Log in

Drawdown and Drawup for Fractional Brownian Motion with Trend

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

We consider the drawdown and drawup of a fractional Brownian motion with trend, which corresponds to the logarithm of geometric fractional Brownian motion representing the stock price in a financial market. We derive the asymptotics of tail probabilities of the maximum drawdown and maximum drawup, respectively, as the threshold goes to infinity. It turns out that the extremes of drawdown lead to new scenarios of asymptotics depending on the Hurst index of fractional Brownian motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hadjiliadis, O., Večeř, J.: Drawdowns preceding rallies in the Brownian motion model. Quant. Finance 6(5), 403–409 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Zhang, H., Leung, T., Hadjiliadis, O.: Stochastic modeling and fair valuation of drawdown insurance. Insur. Math. Econom. 53(3), 840–850 (2013)

    Article  MATH  Google Scholar 

  3. James, J., Yang, L.: Stop-losses, maximum drawdown-at-risk and replicating financial time series with the stationary bootstrap. Quant. Finance 10(1), 1–12 (2010)

    Article  MathSciNet  Google Scholar 

  4. Pospisil, L., Vecer, J.: Portfolio sensitivity to changes in the maximum and the maximum drawdown. Quant. Finance 10(6), 617–627 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cherny, V., Obł ój, J.: Portfolio optimisation under non-linear drawdown constraints in a semimartingale financial model. Finance Stoch. 17(4), 771–800 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Kardaras, C., Obł ój, J., Platen, E.: The numéraire property and long-term growth optimality for drawdown-constrained investments. Math. Finance 27(1), 68–95 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mandjes, M.: Large Deviations for Gaussian Queues. Modelling Communication Networks. Wiley, Chichester (2007)

    Book  MATH  Google Scholar 

  8. Dȩbicki, K., Mandjes, M.: Queues and Lévy Fluctuation Theory. Universitext, Springer, Cham (2015)

    Book  MATH  Google Scholar 

  9. Baurdoux, E.J., Palmowski, Z., Pistorius, M.R.: On future drawdowns of Lévy processes. Stoch. Process. Appl. 127(8), 2679–2698 (2017)

    Article  MATH  Google Scholar 

  10. Landriault, D., Li, B., Zhang, H.: On magnitude, asymptotics and duration of drawdowns for Lévy models. Bernoulli 23(1), 432–458 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Pospisil, L., Vecer, J., Hadjiliadis, O.: Formulas for stopped diffusion processes with stopping times based on drawdowns and drawups. Stoch. Process. Appl. 119(8), 2563–2578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Elliott, R.J., van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13(2), 301–330 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Shokrollahi, K., Kiliçman, A.: The valuation of currency options by fractional Brownian motion. SpringerPlus 5, 1145 (2016)

    Article  Google Scholar 

  14. Douady, R., Shiryaev, A.N., Yor, M.: On the probability characteristics of ‘drop’ variables in standard Brownian motion. Theory Probab. Appl. 44(1), 29–38 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Magdon-Ismail, M., Atiya, A.F., Pratap, A., Abu-Mostafa, Y.S.: On the maximum drawdown of a Brownian motion. J. Appl. Probab. 41(1), 147–161 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  16. Salminen, P., Vallois, P.: On maximum increase and decrease of Brownian motion. Ann. Inst. H. Poincaré Probab. Statist. 43(6), 655–676 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dȩbicki, K., Hashorva, E., Liu, P.: Uniform tail approximation of homogenous functionals of Gaussian fields. Adv. Appl. Probab. 49, 1037–1066 (2017)

    Article  MathSciNet  Google Scholar 

  18. Piterbarg, V.: Asymptotic methods in the theory of Gaussian processes and fields, vol. 148 of Translations of Mathematical Monographs. American Mathematical Society, Providence (1996)

  19. Piterbarg, V.: Large deviations of a storage process with fractional Browanian motion as input. Extremes 4, 147–164 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hashorva, E., Ji, L., Piterbarg, V.I.: On the supremum of \(\gamma \)-reflected processes with fractional Brownian motion as input. Stoch. Process. Appl. 123(11), 4111–4127 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Dȩbicki, K., Liu, P.: Extremes of stationary Gaussian storage models. Extremes 19(2), 273–302 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dȩbicki, K., Hashorva, E., Liu, P.: Extremes of \(\gamma \)-reflected Gaussian process with stationary increments. ESAIM Probab. Stat. 21, 495–535 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Adler, R., Taylor, J.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007)

    Google Scholar 

  24. Dȩbicki, K.: Ruin probability for Gaussian integrated processes. Stoch. Process. Appl. 98(1), 151–174 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hüsler, J., Piterbarg, V.I.: On the ruin probability for physical fractional Brownian motion. Stoch. Process. Appl. 113(2), 315–332 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  26. Dieker, A.: Extremes of Gaussian processes over an infinite horizon. Stoch. Process. Appl. 115(2), 207–248 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Dȩbicki, K., Engelke, S., Hashorva, E.: Generalized Pickands constants and stationary max-stable processes. Extremes 20(3), 493–517 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Dȩbicki, K., Michna, Z., Rolski, T.: Simulation of the asymptotic constant in some fluid models. Stoch. Models 19(3), 407–423 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Dieker, A., Yakir, B.: On asymptotic constants in the theory of Gaussian processes. Bernoulli 20(3), 1600–1619 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Dieker, A.B., Mikosch, T.: Exact simulation of Brown–Resnick random fields at a finite number of locations. Extremes 18(2), 301–314 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bai, L., Dȩbicki, K., Hashorva, E., Luo, L.: On generalised Piterbarg constants. Methodol. Comput. Appl. Probab. 20(1), 137–164 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Harper, A.J.: Pickands’ constant \(H_\alpha \) does not equal \(1/\Gamma (1/\alpha )\), for small \(\alpha \). Bernoulli 23(1), 582–602 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  33. Dȩbicki, K., Kosiński, K.M.: An Erdös-Révész type law of the iterated logarithm for reflected fractional Brownian motion. Extremes 20(4), 729–749 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Kosiński, K.M., Liu, P.: Sample path properties of reflected Gaussian processes. ALEA Lat Am. J. Probab. Math. Stat. 15, 453–478 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his/her useful suggestions and detailed comments which significantly improved the readability of this contribution. We also sincerely thank Professor Enkelejd Hashorva for his encouragement and support to finish this work. Thanks to the Swiss National Science Foundation Grant 200021-175752/1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Liu.

Appendix

Appendix

1.1 Appendix A

This subsection is devoted to proofs of Lemmas 3.13.2.

Proof of Lemma 3.1

Note that for any \(\delta >0\) and u sufficiently large, the maximum of \(\sigma _u^-(s,t)\) over \(0\le s\le t\le T\) is only attained at \([0,\delta ]\times [T-\delta , T]\). Next we consider the variance function \(\sigma _u^-(s,t)\) over \([0,\delta ]\times [T-\delta , T]\). It follows that

$$\begin{aligned} 1-\frac{\sigma _u^-(s,t)}{\sigma _u^-(0,T)}&=1-\frac{|t-s|^H}{u+\mu (t-s)-\frac{1}{2}(t^{2H}-s^{2H})}\frac{u+\mu T-\frac{1}{2}T^{2H}}{T^H}\\&=1-\frac{\frac{|t-s|^H}{T^H}}{\frac{u+\mu (t-s)-\frac{1}{2}(t^{2H}-s^{2H})}{u+\mu T-\frac{1}{2}T^{2H}}}\\&= \left( 1-\frac{|t-s|^H}{T^H}\right) (1+o(1))\\&\quad +\left( \frac{u+\mu (t-s)-\frac{1}{2}(t^{2H}-s^{2H})}{u+\mu T-\frac{1}{2}T^{2H}}-1\right) (1+o(1))\\&= \frac{H}{T}(T-t+s)(1+o(1))\\&\quad +\frac{-\mu (T-t+s)+\frac{1}{2}(2HT^{2H-1}(T-t)+s^{2H})}{u+\mu T-\frac{1}{2}T^{2H}}(1+o(1))\\&= \left( \frac{H}{T}(T-t)+\frac{H}{T}s+\frac{1}{2u}s^{2H}\right) \\&\qquad (1+a(\delta ,u)), (s,t)\in [0,\delta ]\times [T-\delta , T], \end{aligned}$$

as \(\delta \) sufficiently small and u sufficiently large, where \(\lim _{\delta \rightarrow 0, u\rightarrow \infty }a(\delta ,u)=0\). The fact that

$$\begin{aligned} \frac{H}{T}(T-t)+\frac{H}{T}s+\frac{1}{2u}s^{2H}>0 \end{aligned}$$

for \((s,t)\in ([0,\delta ]\times [T-\delta , T]){\setminus } \{(0,T)\}\) implies that the maximizer of \(\sigma _u^-(s,t)\) over \(0\le s\le t\le T\) is unique and equals (0, T). This completes the proof. \(\square \)

Proof of Lemma 3.2

For any \(\delta >0\) and u sufficiently large, the maximum of \(\sigma _u^+(s,t)\) over \(0\le s\le t\le T\) is attained in \([0,\delta ]\times [T-\delta , T]\). Next we focus on \(\sigma _u^+(s,t)\) over \([0,\delta ]\times [T-\delta ,T]\). For \(\delta >0\) sufficiently small and u sufficiently large,

$$\begin{aligned} 1-\frac{\sigma _u^+(s,t)}{\sigma _u^+(0,T)}&=1-\frac{|t-s|^H}{u-\mu (t-s)+\frac{1}{2}(t^{2H}-s^{2H})}\frac{u-\mu T+\frac{1}{2}T^{2H}}{T^H}\\&=1-\frac{\frac{|t-s|^H}{T^H}}{\frac{u-\mu (t-s)+\frac{1}{2}(t^{2H}-s^{2H})}{u-\mu T+\frac{1}{2}T^{2H}}}\\&= \left( 1-\frac{|t-s|^H}{T^H}\right) (1+o(1))\\&\quad +\left( \frac{u-\mu (t-s)+\frac{1}{2}(t^{2H}-s^{2H})}{u-\mu T+\frac{1}{2}T^{2H}}-1\right) (1+o(1))\\&= \frac{H}{T}(T-t+s)(1+o(1))\\&\quad +\frac{\mu (T-t+s)-\frac{1}{2}(2HT^{2H-1}(T-t)+s^{2H})}{u-\mu T+\frac{1}{2}T^{2H}}(1+o(1))\\&= \left( \frac{H}{T}(T-t)+\frac{H}{T}s\right) (1+a_1(\delta ,u))\\&\quad -\frac{1}{2u}s^{2H}(1+a_2(\delta ,u)), \quad (s,t)\in [0,\delta ]\times [T-\delta , T], \end{aligned}$$

where \(\lim _{\delta \rightarrow 0, u\rightarrow \infty }a_i(\delta ,u)=0, i=1,2. \) If \(H\ge \frac{1}{2}\), then

$$\begin{aligned} 1-\frac{\sigma _u^+(s,t)}{\sigma _u^+(0,T)} = \left( \frac{H}{T}(T-t)+\frac{H}{T}s\right) (1+a_1(\delta ,u)), \quad (s,t)\in [0,\delta ]\times [T-\delta , T], \end{aligned}$$

which implies that the maximizer of \(\sigma _u^+(s,t)\) is unique and equals (0, T). For \(0<H<\frac{1}{2}\),

$$\begin{aligned} 1-\frac{\sigma _u^+(s,T)}{\sigma _u^+(0,T)}&=\frac{H}{T}s(1+a_1(\delta ,u))-\frac{1}{2u}s^{2H}(1+a_2(\delta ,u))\\&=\frac{H}{T}s^{2H}\left( s^{1-2H}(1+a_1(\delta ,u))-\frac{1}{2u}(1+a_2(\delta ,u))\right) <0, \end{aligned}$$

as \(s<\left( \frac{(1+a_2(\delta ,u))}{2u(1+a_1(\delta ,u))}\right) ^{\frac{1}{1-2H}}\sim (2u)^{-\frac{1}{1-2H}}.\) This implies that the maximum of \(\sigma _u^+(s,T)\) over [0, T] is attained over \((0,\delta )\) for \(\delta >0\) sufficiently small and u sufficiently large. We denote this point by \(s_u\). Using the fact that

$$\begin{aligned}&\frac{\partial \sigma _u^+(s_u,T)}{\partial s}\\&\quad =\frac{-H(T-s_u)^{H-1}\left( u-\mu (T-s_u)+\frac{1}{2}(T^{2H}-s_u^{2H})\right) -(T-s_u)^H(\mu -Hs_u^{2H-1})}{(u-\mu (T-s_u)+\frac{1}{2}(T^{2H}-s_u^{2H}))^2}=0, \end{aligned}$$

we have that

$$\begin{aligned} s_u=\left( \frac{u}{T}+\frac{1}{2}T^{2H-1}+\frac{\mu (1-H)}{H}+\frac{1}{2T}s_u^{2H}-\frac{\mu (1-H)}{TH}s_u\right) ^{\frac{1}{2H-1}}\sim T^{\frac{1}{1-2H}}u^{-\frac{1}{1-2H}}. \end{aligned}$$

Next we show that the maximizer of \(\sigma _u^+(s,t)\) is \((s_u,T)\) for \(0<H<\frac{1}{2}\) and u sufficiently large. Observe that

$$\begin{aligned} 1-\frac{\sigma _u^+(s,t)}{\sigma _u^+(s_u,T)}=-\frac{\sigma _u^+(s,T)-\sigma _u^+(s_u,T)}{\sigma _u^+(s_u,T)} +\frac{\sigma _u^+(s,T)-\sigma _u^+(s,t)}{\sigma _u^+(s_u,T)}. \end{aligned}$$

Direct calculation gives that, as \(u\rightarrow \infty \),

$$\begin{aligned} \sigma _u^+(s_u,T)&\sim \frac{T^H}{u},\\ \sigma _u^+(s,T)-\sigma _u^+(s_u,T)&=\frac{1}{2}\frac{\partial ^2\sigma _u^+(s_u,T)}{\partial ^2 s }(s-s_u)^2(1+o(1))\sim \frac{H(H-1)T^{H-2}}{2u}(s-s_u)^2,\\ \sigma _u^+(s,T)-\sigma _u^+(s,t)&=\frac{\partial \sigma _u^+(s,T)}{\partial t}(T-t)(1+o(1))\sim \frac{HT^{H-1}}{u}(T-t), \quad t\rightarrow T. \end{aligned}$$

Thus we have

$$\begin{aligned} 1-\frac{\sigma _u^+(s,t)}{\sigma _u^+(s_u,T)}= & {} \frac{H(1-H)}{2T^2}(s-s_u)^2(1+o(1))+\frac{H}{T}(T-t)(1+o(1)), \quad \\&u\rightarrow \infty , |s-s_u|, T-t\rightarrow 0, \end{aligned}$$

which implies that the maximizer of \(\sigma _u^+(s,t)\) is unique and equals \((s_u,T)\) for u large. This completes the proof. \(\square \)

Proof of Lemma 3.3

Recalling that \(\sigma _H(s,t)=|t-s|^H\), we have, for \((s,t)\ne (s',t')\),

$$\begin{aligned}&1-Corr(B_H(t)-B_H(s),B_H(t')-B_H(s'))\\&\quad = \frac{{\mathbb {E}}\left\{ ((B_H(t)-B_H(s))-(B_H(t')-B_H(s')))^2\right\} -(\sigma _H(s,t)-\sigma _H(s',t'))^2}{2\sigma _H(s,t)\sigma _H(s',t')}\\&\quad = \frac{{\mathbb {E}}\left\{ ((B_H(t)-B_H(t'))-(B_H(s)-B_H(s')))^2\right\} -(\left|t-s \right|^{H}-\left|t'-s' \right|^{H})^2}{2\left|t-s \right|^{H}\left|t'-s' \right|^{H}}\\&\quad = \frac{\left|t-t' \right|^{2H}+\left|s-s' \right|^{2H}+(|t-s|^{2H}+|t'-s'|^{2H}-|t-s'|^{2H}-|t'-s|^{2H}) -(\left|t-s \right|^{H}-\left|t'-s' \right|^{H})^2}{2\left|t-s \right|^{H}\left|t'-s' \right|^{H}}. \end{aligned}$$

Using Taylor formula, we have that for \((s,t)\in [0,\delta _u]\,\times \, [T-\delta _u,T]\), with \(\lim _{u\rightarrow \infty }\delta _u=0\) and u sufficiently large

$$\begin{aligned}&|t-s|^{2H}-|t-s'|^{2H}-(|t'-s|^{2H}-|t'-s'|^{2H})\\&\quad =2H(|\theta _1-s|^{2H-1}-|\theta _1-s'|^{2H-1})(t-t')\\&\quad =2H(2H-1)(\theta _1-\theta _2)^{2H-2}(s-s')(t-t'),\\&\qquad (\left|t-s \right|^{H}-\left|t'-s' \right|^{H})^2 =(H\theta _3(t-t'-s+s'))^2, \end{aligned}$$

where \(\theta _1\in (t,t')\), \(\theta _2\in (s,s')\) and \(\theta _3\in (t-s, t'-s')\). Moreover,

$$\begin{aligned} \lim _{u\rightarrow \infty }\lim _{s,t\in [0,\delta _u]\times [T-\delta _u,T]}\left| |t-s|^{H}- T^H\right| =0. \end{aligned}$$

Consequently, for \(\lim _{u\rightarrow \infty }\delta _u=0\),

$$\begin{aligned}&\lim _{u\rightarrow \infty }\sup _{(s,t)\ne (s',t'), (s,t), (s',t')\in [0,\delta _u]\times [T-\delta _u, T]}\\&\quad \times \left| \frac{1-Corr\left( B_H(t)-B_H(s), B_H(t')-B_H(s')\right) }{\frac{|s-s'|^{2H}+|t-t'|^{2H}}{2T^{2H}}}-1\right| =0. \end{aligned}$$

\(\square \)

1.2 Appendix B

In this subsection, we present some useful results derived in [17]. First, we give an adaptation of Theorem 3.2 in [17] to our setting. Let \(X_u(s,t), (s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]\) with \({(0,0)}\in \prod _{i=1,2}[a_i(u), b_i(u)]\), be a family of centered continuous Gaussian random fields with variance function \(\sigma _u(s,t)\) satisfying

$$\begin{aligned} \sigma _u(0,0)=1, \quad \lim _{u\rightarrow \infty }\sup _{(s,t)\ne (0,0), (s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]}\left| \frac{1-\sigma _u(s,t)}{ \frac{|s|^{\beta _1}}{g_1(u)}+\frac{|t|^{\beta _2}}{g_2(u)}}-1\right| =0,\qquad \end{aligned}$$
(27)

where \(\beta _i>0, i=1,2\), \(\lim _{u\rightarrow \infty }g_i(u)=\infty , i=1,2\), \(\lim _{u\rightarrow \infty }\frac{|a_i(u)|^{\beta _1}}{g_1(u)}+\frac{+|b_i(u)|^{\beta _2}}{g_2(u)}=0, i=1,2,\) and correlation function satisfying

$$\begin{aligned}&\lim _{u\rightarrow \infty }\sup _{(s,t)\ne (s',t'), (s,t), (s',t')\in \prod _{i=1,2}[a_i(u), b_i(u)]}\nonumber \\&\quad \times \left| n^2(u)\frac{1-Corr(X_u(s,t), X_u(s',t'))}{|s-s'|^{\alpha }+|t-t'|^{\alpha }}-1\right| =0, \end{aligned}$$
(28)

with \(\alpha \in (0,2]\) and \(\lim _{u\rightarrow \infty }n(u)=\infty \).

We suppose that \(\lim _{u\rightarrow \infty }\frac{n^2(u)}{g_i(u)}=\nu _i\in [0,\infty ], i=1,2\).

Lemma 3.4

Let \(X_u(s,t), (s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]\) with \({(0,0)}\in \prod _{i=1,2}[a_i(u), b_i(u)]\) be a family of centered continuous Gaussian random fields satisfying (27) and (28).

  1. i)

    If \(\nu _i=0, i=1,2\) and for \(i=1,2\),

    $$\begin{aligned}&\lim _{u\rightarrow \infty }\frac{(n(u))^{2/\beta _i}a_i(u)}{(g_i(u))^{1/\beta _i}}=y_{i,1}, \quad \lim _{u\rightarrow \infty }\frac{(n(u))^{2/\beta _i}b_i(u)}{(g_i(u))^{1/\beta _i}}=y_{i,2},\\&\quad \lim _{u\rightarrow \infty }\frac{(n(u))^{2/\beta _i}(a_i^2(u)+b_i^2(u))}{(g_i(u))^{2/\beta _i}}=0, \end{aligned}$$

    with \(-\infty \le y_{i,1}<y_{i,2}\le \infty \), then

    $$\begin{aligned}&\mathbb {P}\left\{ \sup _{(s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]}X_u(s,t)>n(u)\right\} \\&\quad \sim \left( {\mathcal {H}}_{\alpha /2}\right) ^2\prod _{i=1}^{2}\int _{y_{i,1}}^{y_{i,2}}e^{-|s|^{\beta _i}}ds \prod _{i=1}^{2}\left( \frac{g_i(u)}{n^2(u)}\right) ^{1/\beta _i}\Psi (n(u)). \end{aligned}$$
  2. ii)

    If \(\nu _i\in (0,\infty )\) and further \(\lim _{u\rightarrow \infty }a_i(u)=a_i\in [-\infty ,0], \lim _{u\rightarrow \infty }b_i(u)=b_i\in [0,\infty ] \), then

    $$\begin{aligned} \mathbb {P}\left\{ \sup _{(s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]}X_u(s,t)>n(u)\right\} \sim \prod _{i=1}^{2} {\mathcal {P}}_{\alpha /2}^{v_{i},\beta _i}([a_i,b_i])\Psi (n(u)), \end{aligned}$$

    where

    $$\begin{aligned} {\mathcal {P}}_{\alpha /2}^{v_{i},\beta _i} ([a_i,b_i])={\mathbb {E}}\left\{ \sup _{t\in [a_i,b_i]}e^{\sqrt{2}B_{\alpha /2}(t)-|t|^{\alpha }-\nu _i|t|^{\beta _i}}\right\} \in (0,\infty ),\ i=1,2. \end{aligned}$$
  3. iii)

    If \(\nu _i=\infty , i=1,2\), then

    $$\begin{aligned} \mathbb {P}\left\{ \sup _{(s,t)\in \prod _{i=1,2}[a_i(u), b_i(u)]}X_u(s,t)>n(u)\right\} \sim \Psi (n(u)). \end{aligned}$$

Next we give a simpler version of Proposition 2.2 in [17]. Denote by \(\Lambda (u)\) a series of index sets depending on u and by \([a_1,a_2]\times [b_1,b_2]\) a rectangle with \(a_1<a_2\) and \(b_1<b_2\). Let \(X_{u,k,l}(s,t), (s,t)\in [a_1,a_2]\times [b_1,b_2], (k,l)\in \Lambda (u)\) be a family of two-dimensional continuous Gaussian random fields with mean 0 and variance function 1. There exist \(n_{k,l}(u), (k,l)\in \Lambda (u)\) satisfying

$$\begin{aligned} \lim _{u\rightarrow \infty }\sup _{(k,l), (k',l')\in \Lambda (u)}\left| \frac{n_{k,l}(u)}{n_{k'l'}(u)}-1\right| =0,\quad \lim _{u\rightarrow \infty }\inf _{(k,l)\in \Lambda (u)}n_{k,l}=\infty , \end{aligned}$$
(29)

such that the correlation function satisfies

$$\begin{aligned}&\lim _{u\rightarrow \infty }\sup _{(k,l)\in \Lambda (u)}\sup _{(s,t)\ne (s',t'), (s,t), (s',t')\in [a_1,a_2]\times [b_1,b_2]}\nonumber \\&\quad \times \left| \left( n_{k,l}(u)\right) ^2\frac{1-Corr\left( X_{u,k,l}(s,t), X_{u,k,l}(s',t')\right) }{|s-s'|^{\alpha _1}+|t-t'|^{\alpha _2}}-1\right| =0, \end{aligned}$$
(30)

where \(\alpha _i\in (0,2], i=1,2\).

Then Proposition 2.2 in [17] leads to the following result.

Lemma 3.5

Let \(X_{u,k,l}(s,t), (s,t)\in E, (k,l)\in \Lambda (u)\) be a family of centered two-dimensional continuous Gaussian random fields with unit variance. Assume further that (29)–(30) hold. Then

$$\begin{aligned}&\lim _{u\rightarrow \infty }\sup _{(k,l)\in \Lambda (u)}\left| \frac{\mathbb {P}\left\{ \sup _{(s,t)\in [a_1,a_2]\times [b_1,b_2]}X_{u,k,l}(s,t)>n_{k,l}(u)\right\} }{\Psi \left( n_{k,l}(u)\right) }\right. \\&\quad \left. -{\mathcal {H}}_{\frac{\alpha _1}{2}}([a_1,a_2]){\mathcal {H}}_{\frac{\alpha _1}{2}}([b_1,b_2])\right| =0. \end{aligned}$$

Finally, we display a lemma concerning the uniform double maximum, a simpler version of Corollary 3.2 in [17]. Let \(E_u\) be a family of non-empty compact subset of \(\mathbb {R}^2\) and \(A_i\subset [0,S]^2, i=1,2\) be two non-empty compact subsets of \(\mathbb {R}^2\). Denote by \(\Lambda _0(u)=\{(k_1,l_1,k_2, l_2): (k_i,l_i)+A_i\subset E_u, i=1,2\}\). Let n(u) and \(n_{k_i,l_i}(u), (k_i,l_i)+A_i\subset E_u \) be a family of positive functions such that

$$\begin{aligned} \lim _{u\rightarrow \infty }\sup _{(k_i,l_i)+A_i\in E_u}\left| \frac{n_{k_i,l_i}(u)}{n(u)}-1\right| =0, \quad i=1,2, \quad \lim _{u\rightarrow \infty } n(u)=\infty . \end{aligned}$$
(31)

Lemma 3.6

Let \(X_u(s,t), (s,t)\in E_u\) be a family of centered Gaussian random fields with variance 1 and correlation function satisfying

$$\begin{aligned} \lim _{u\rightarrow \infty }\sup _{(s,t)\ne (s',t'), (s,t),(s',t')\in E_u}\left| (n(u))^2\frac{1-Corr(X_u(s,t), X_u(s',t'))}{|s-s'|^{\alpha _1}+|t-t'|^{\alpha _2}}-1\right| =0. \end{aligned}$$

Moreover, there exists \(\delta >0\) such that for u large enough

$$\begin{aligned} Corr(X_u(s,t), X_u(s',t'))>\delta -1, \ (s,t),\ (s',t')\in E_u. \end{aligned}$$

If further (31) is satisfied, then there exit \({\mathcal {C}}, {\mathcal {C}}_1>0\) such that for all u large

$$\begin{aligned}&\sup _{(k_1,l_1,k_2,l_2)\in \Lambda _0(u), A_i\subset [0,S]^2, A_i\ne \emptyset , i=1,2 }\\&\quad \frac{\mathbb {P}\left\{ \sup _{(s,t)\in (k_1,l_1)+A_1}X_u(s,t)>n_{k_1,l_1}(u), \sup _{(s,t)\in (k_2,l_2)+A_2}X_u(s,t)>n_{k_2,l_2}(u)\right\} }{e^{-{\mathcal {C}}_1 (F((k_1,l_1)+A_1, (k_2,l_2)+A_2))^{\frac{1}{2}\min (\alpha _1,\alpha _2)}}S^4\Psi (n_{k_1,l_1,k_2,l_2}(u))}\le {\mathcal {C}}, \end{aligned}$$

where

$$\begin{aligned} F(A,B)=\inf _{s\in A, t\in B}||s-t||, \quad n_{k_1,l_1,k_2,l_2}(u)=\min (n_{k_1,l_1}(u), n_{k_2,l_2}(u)), \end{aligned}$$

and \({\mathcal {C}}\) and \({\mathcal {C}}_1\) are independent of u and S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, L., Liu, P. Drawdown and Drawup for Fractional Brownian Motion with Trend. J Theor Probab 32, 1581–1612 (2019). https://doi.org/10.1007/s10959-018-0836-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-018-0836-y

Keywords

Mathematics Subject Classification (2010)

Navigation