Skip to main content
Log in

Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

A spectral representation for regularly varying Lévy processes with index between one and two is established and the properties of the resulting random noise are discussed in detail, giving also new insight in the L 2-case where the noise is a random orthogonal measure.

This allows a spectral definition of multivariate regularly varying Lévy-driven continuous time autoregressive moving average (CARMA) processes. It is shown that they extend the well-studied case with finite second moments and coincide with definitions previously used in the infinite variance case when they apply.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy Processes and Stochastic Calculus, 2nd edn. Cambridge Studies in Advanced Mathematics, vol. 116. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  2. Arató, M.: Linear Stochastic Systems with Constant Coefficients. Lecture Notes in Control and Information Sciences, vol. 45. Springer, Berlin (1982)

    Book  MATH  Google Scholar 

  3. Bernstein, D.S.: Matrix Mathematics: Theory, Facts, and Formulas with Application to Linear Systems Theory. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  4. Bretagnolle, J.: p-Variation de Fonctions Aléatoires. Lecture Notes in Mathematics, vol. 258. Springer, Berlin (1972)

    Google Scholar 

  5. Brockwell, P.J.: Lévy-driven CARMA processes. Ann. Inst. Stat. Math. 53, 113–124 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brockwell, P.J.: Representations of continuous-time ARMA processes. J. Appl. Probab. 41A, 375–382 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brockwell, P.J., Davis, R.A.: Time Series: Theory and Methods, 2nd edn. Springer, New York (1991)

    Book  Google Scholar 

  8. Brockwell, P.J., Lindner, A.: Existence and uniqueness of stationary Lévy-driven CARMA processes. Stoch. Process. Appl. 119, 2660–2681 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Cambanis, S., Houdré, C.: Stable processes: moving averages versus Fourier transforms. Probab. Theory Relat. Fields 95, 75–85 (1993)

    Article  MATH  Google Scholar 

  10. Cambanis, S., Miamee, A.G.: On prediction of harmonizable stable processes. Sankhya, Ser. A 51, 269–294 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Cambanis, S., Soltani, A.R.: Prediction of stable processes: Spectral and moving average representations. Z. Wahrscheinlichkeitstheor. Verw. Geb. 66, 593–612 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cambanis, S., Hardin, C.D., Jr., Weron, A.: Ergodic properties of stationary stable processes. Stoch. Process. Appl. 24, 1–18 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  13. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes, Volume I: Elementary Theory and Methods, 2nd edn. Probability and Its Applications. Springer, New York (2003)

    Google Scholar 

  14. Doob, J.L.: Stochastic Processes. Wiley, New York (1953)

    MATH  Google Scholar 

  15. Freitag, E., Busam, R.: Funktionentheorie I, 3rd edn. Springer, Berlin (2000)

    Google Scholar 

  16. García, I., Klüppelberg, C., Müller, G.: Estimation of stable CARMA models with an application to electricity spot prices. Stat. Model. (2010, to appear). Available from http://www-m4.ma.tum.de/Papers (preprint)

  17. Hosoya, Y.: Harmonizable stable processes. Z. Wahrscheinlichkeitstheor. Verw. Geb. 60, 517–533 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hult, H., Lindskog, F.: On regular variation for infinitely divisible random vectors and additive processes. Adv. Appl. Probab. 38, 134–148 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. Katznelson, Y.: An Introduction to Harmonic Analysis, 3rd edn. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Lang, S.: Complex Analysis, 3rd edn. Graduate Texts in Mathematics, vol. 103. Springer, New York (1993)

    Book  MATH  Google Scholar 

  21. Larsson, E.K., Mossberg, M., Söderström, T.: An overview of important practical aspects of continuous-time ARMA system identification. Circuits Syst. Signal Process. 25, 17–46 (2006)

    Article  MATH  Google Scholar 

  22. Lindskog, F.: Multivariate extremes and regular variation for stochastic processes. PhD thesis, ETH Zurich (2004)

  23. Makagon, A., Mandrekar, V.: The spectral representation of stable processes: Harmonizability and regularity. Probab. Theory Relat. Fields 85, 1–11 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  24. Marquardt, T., Stelzer, R.: Multivariate CARMA processes. Stoch. Process. Appl. 117, 96–120 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Moser, M., Stelzer, R.: Tail behavior of multivariate Lévy-driven mixed moving average processes and supOU stochastic volatility models. Available from http://www-m4.ma.tum.de/Papers (preprint) (2010)

  26. Rajput, B.S., Rosiński, J.: Spectral representations of infinitely divisible processes. Probab. Theory Relat. Fields 82, 451–487 (1989)

    Article  MATH  Google Scholar 

  27. Resnick, S.I.: Heavy-Tail Phenomena: Probabilistic and Statistical Modeling. Springer, New York (2007)

    MATH  Google Scholar 

  28. Rootzén, H.: Extremes of moving averages of stable processes. Ann. Probab. 6, 847–869 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rozanov, Y.A.: Stationary Random Processes. Holden-Day, San Francisco (1967)

    MATH  Google Scholar 

  30. Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes: Stochastic Models with Infinite Variance. Chapman & Hall/CRC Press, London/Boca Raton (1994)

    MATH  Google Scholar 

  31. Sato, K.: Lévy Processes and Infinitely Divisible Distributions. Cambridge Studies in Advanced Mathematics, vol. 68. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  32. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  33. Tauchen, G., Todorov, V.: Simulation methods for Lévy-driven continuous-time autoregressive moving average (CARMA) stochastic volatility models. J. Bus. Econ. Stat. 24, 455–469 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Fuchs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fuchs, F., Stelzer, R. Spectral Representation of Multivariate Regularly Varying Lévy and CARMA Processes. J Theor Probab 26, 410–436 (2013). https://doi.org/10.1007/s10959-011-0369-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10959-011-0369-0

Keywords

Mathematics Subject Classification (2000)

Navigation