Skip to main content
Log in

Estimates of the Distance to the Set of Divergence Free Fields

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

The paper deals with computable estimates of the distance to the set of divergence free fields, which are necessary for quantitative analysis of mathematical models of incompressible media (e.g., the Stokes, Oseen, and Navier–Stokes problems). The distance is measured in terms of the L q norm of the gradient with q ∈ (1,+). For q = 2, these estimates follow from the so-called inf-sup condition (or the Aziz–Babuška–Ladyzhenskaya–Solonnikov inequality) and require sharp estimates of the respective constant, which are known only for a very limited amount of cases. A way to bypass this difficulty is suggested, and it is shown that for a wide class of domains (and different boundary conditions), the computable estimates of the distance to the set of divergence free fields can be presented in the form, which uses inf-sup constants for certain basic problems. In the last section, these estimates are applied to problems in the theory of viscous incompressible fluids. They generate fully computable bounds of the distance to generalized solutions of the problems considered. Bibliography: 26 titles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Babuška, “The finite element method with Lagrangian multipliers,” Numer. Math., 20, 179–192 (1973).

    Article  MATH  Google Scholar 

  2. I. Babuška and A. K. Aziz, “Survey lectures on the mathematical foundations of the finite element method,” in: The Mathematical Formulations of the Finite Element Method with Applications to Partial Differential Equations, Academic Press, New York (1972), pp. 5–359.

  3. J. Bramble, “A proof of the inf-sup condition for the Stokes equations on Lipschitz domains,” Math. Models Methods Appl. Sci., 13, No. 3, 361–371 (2003).

    Article  MATH  MathSciNet  Google Scholar 

  4. M. E. Bogovskii, “Solution of the first boundary value problem for the equation of continuity of an incompressible medium,” Dokl. Akad Nauk SSSR, 248, No. 5, 1037–1040 (1979).

    MathSciNet  Google Scholar 

  5. M. E. Bogovskii, “Solution of some vector analysis problems connected with operators Div and Grad,” in: Trudy of S. L. Sobolev Seminar, Novosibirsk (1979), pp. 1037–1040.

  6. F. Brezzi, “On the existence, uniqueness and approximation of saddle–point problems arising from Lagrange multipliers,” R.A.I.R.O., Annal. Numer., R2, 129–151 (1974).

    MathSciNet  Google Scholar 

  7. M. Dobrowolski, “On the LBB constant on stretched domains,” Math. Nachr., 254–255, 64–67 (2003).

    Article  MathSciNet  Google Scholar 

  8. M. Dobrowolski, “On the LBB condition in numerical analysis of the Stokes equations,” Appl. Numer. Math., 54, No. 3,4, 314–323 (2005).

    Article  MATH  MathSciNet  Google Scholar 

  9. K. O. Friedrichs, “On certain inequalities and characteristic value problems for analytic functions and for functions of two variables,” Trans. Amer. Math. Soc., 41, 321–364 (1937).

    Article  MathSciNet  Google Scholar 

  10. G. P. Galdi, An Introduction to the Mathematical Theory of the Navier–Stokes Equations. Vol. II, Springer Tracts in Natural Philosophy, 39, Springer–Verlag, New York (1994).

  11. O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Fluid, [in Russian], Nauka, Moscow (1970).

    Google Scholar 

  12. O. A. Ladyzenskaja and V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier–Stokes equation,” Zap. Nauchn. Semin. LOMI, 59, 81–116 (1976).

    MathSciNet  Google Scholar 

  13. D. S. Malkus, “Eigenproblems associated with the discrete LBB-condition for incompressible finite elements,” Int. J. Eng. Sci., 19, 1299–1310 (1981).

    Article  MATH  MathSciNet  Google Scholar 

  14. J. Nečas, Les Méthodes Directes en Théorie des ´Equations Elliptiques, Masson et Cie, ´Editeurs, Paris; Academia, ´Editeurs, Prague (1967).

  15. M. A. Olshanskii and E. V. Chizhonkov, “On the best constant in the inf sup condition for prolonged rectangular domains,” Mat. Zam., 67, No. 3, 387–396 (2000).

    Article  MathSciNet  Google Scholar 

  16. L. E. Payne, “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov,” IMA J. Appl. Math., 72, 563–569 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  17. K. I. Piletskas, “Spaces of solenoidal vectors,” Trudy Mat. Inst. Steklov, 159, 137–149 (1983).

    MATH  MathSciNet  Google Scholar 

  18. K. I. Piletskas, “On spaces of solenoidal vectors,” Zap. Nauchn. Semin. LOMI, 96, 237–239 (1980).

    MATH  Google Scholar 

  19. S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition,” Algebra Analiz, 16, No. 5, 124–161 (2004).

    MathSciNet  Google Scholar 

  20. S. Repin, “Aposteriori estimates for the Stokes problem,” J. Math. Sci., 109, No. 5, 1950–1964 (2002).

    Article  MathSciNet  Google Scholar 

  21. S. Repin, “On a posteriori error estimates for the stationary Navier–Stokes problem,” J. Math. Sci., 150, No. 1, 1885–1889 (2008).

    Article  MATH  MathSciNet  Google Scholar 

  22. S. Repin, A Posteriori Estimates for Partial Differential Equations, Walter de Gruyter, Berlin (2008).

    Book  MATH  Google Scholar 

  23. S. Repin, “Estimates of deviations from the exact solution of a generalized Oseen problem,” J. Math. Sci., 195, No. 1, 64–75 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  24. S. Repin and R. Stenberg, “Two-sided a posteriori estimates for the generalized Stokes problem,” Helsinki University of Technology, Institute of Mathematics, Preprint A516 (2006).

  25. V. A. Solonnikov, “Estimates for solutions of a non-stationary linearized system of Navier Stokes equations,” Trudy Mat. Inst. Steklov, 70, 213–317 (1964)

    MATH  MathSciNet  Google Scholar 

  26. G. Stoyan, “Towards discrete Velte decompositions and narrow bounds for inf-sup constants,” Comp. Math. Appl., 38, 243–261 (1999).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Repin.

Additional information

Published in Zapiski Nauchnykh Seminarov POMI, Vol. 425, 2014, pp. 99–116.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Repin, S. Estimates of the Distance to the Set of Divergence Free Fields. J Math Sci 210, 822–834 (2015). https://doi.org/10.1007/s10958-015-2593-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-015-2593-0

Keywords

Navigation