Skip to main content
Log in

Variational Modeling and Finite-Element Simulation of Functional Fatigue in Polycrystalline Shape Memory Alloys

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Based on our previous works, we present the finite-element implementation of an energy-based material model that displays the effect of functional fatigue of shape memory alloys during cyclic loading. The functional degradation is included in our model by taking account of irreversible martensitic volume fractions. Three internal variables are used: reversible and irreversible volume fractions for the crystallographic phases and Euler angles for parametrization of the martensite strain orientation. The evolution of the volume fractions is modeled in a rate-independent manner, whereas a viscous approach is employed for the Euler angles, which account for the materials’ polycrystalline structure. For the case of a cyclically loaded wire, we calibrate our model using experimental data. The calibration serves as input for the simulation of two more complex boundary value problems to demonstrate the functionality of our material model for localized phase transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

References

  1. Hartl, D.J., Lagoudas, D.C.: Aerospace applications of shape memory alloys. Proc. Inst. Mech. Eng. G J. Aerosp. Eng. 221(4), 535–552 (2007)

    Article  Google Scholar 

  2. Van Humbeeck, J.: Non-medical applications of shape memory alloys. Materi. Sci. Eng. A 273, 134–148 (1999)

    Article  Google Scholar 

  3. Jani, J.M., Leary, M., Subic, A., Gibson, M.A.: A review of shape memory alloy research, applications and opportunities. Mater. Des. 56, 1078–1113 (2014)

    Article  Google Scholar 

  4. Otsuka, K., Wayman, C.M.: Shape Memory Materials. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  5. Otsuka, K., Ren, X.: Physical metallurgy of Ti–Ni-based shape memory alloys. Prog. Mater. Sci. 50(5), 511–678 (2005)

    Article  Google Scholar 

  6. Waimann, J., Junker, P., Hackl, K.: Modeling the cyclic behavior of shape memory alloys. Shape Mem. Superelasticity 3, 124–138 (2017)

    Article  Google Scholar 

  7. Ibarra, A., San Juan, J., Bocanegra, E.H., Nó, M.L.: Evolution of microstructure and thermomechanical properties during superelastic compression cycling in Cu–Al–Ni single crystals. Acta Materialia 55(14), 4789–4798 (2007)

    Article  Google Scholar 

  8. Gall, K., Maier, H.J.: Cyclic deformation mechanisms in precipitated NiTi shape memory alloys. Acta Materialia 50(18), 4643–4657 (2002)

    Article  Google Scholar 

  9. Delville, R., Malard, B., Pilch, J., Sittner, P., Schryvers, D.: Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int. J. Plasticity 27(2), 282–297 (2011)

    Article  Google Scholar 

  10. Krooß, P., Niendorf, T., Kadletz, P.M., Somsen, C., Gutmann, M.J., Chumlyakov, Y.I., Schmahl, W.W., Eggeler, G., Maier, H.J.: Functional fatigue and tension-compression asymmetry in [001]-oriented Co49Ni21Ga30 high-temperature shape memory alloy single crystals. Shape Mem. Superelasticity 1(1), 6–17 (2015)

    Article  Google Scholar 

  11. Simon, T., Kröger, A., Somsen, C., Dlouhy, A., Eggeler, G.: On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Materialia 58(5), 1850–1860 (2010)

    Article  Google Scholar 

  12. Wagner, M.F.X.: Ein Beitrag zur strukturellen und funktionalen Ermüdung von Drähten und Federn aus NiTi-Formgedächtnislegierungen. Europ. Univ.-Verlag (2005)

  13. Morgan, N.B., Friend, C.M.: A review of shape memory stability in NiTi alloys. Le Journal de Physique IV 11(8), 325–332 (2001)

    Google Scholar 

  14. Eggeler, G., Hornbogen, E., Yawny, A., Heckmann, A., Wagner, M.F.X.: Structural and functional fatigue of NiTi shape memory alloys. Mater. Sci. Eng. A 378(1), 24–33 (2004)

    Article  Google Scholar 

  15. Burow, J.: Herstellung, eigenschaften und mikrostruktur von ultrafeinkörnigen niti-formgedächtnislegierungen. Ph.D. thesis, Ruhr-Universität Bochum (2010)

  16. Wagner, M.F.X., Nayan, N., Ramamurty, U.: Healing of fatigue damage in NiTi shape memory alloys. J. Phys. D Appl. Phys. 41(18), 185,408 (2008)

    Article  Google Scholar 

  17. Brinson, C.: One-dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material functions and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4(2), 229–242 (1993)

    Article  Google Scholar 

  18. Bouvet, C., Calloch, S., Lexcellent, C.: A phenomenological model for pseudoelasticity of shape memory alloys under multiaxial proportional and nonproportional loadings. Eur. J. Mech. A Solids 23(1), 37–61 (2004)

    Article  MathSciNet  Google Scholar 

  19. Govindjee, S., Miehe, C.: A multi-variant martensitic phase transformation model: formulation and numerical implementation. Comput. Methods Appl. Mech. Eng. 191(3), 215–238 (2001)

    Article  Google Scholar 

  20. Mielke, A., Theil, F., Levitas, V.I.: A variational formulation of rate-independent phase transformations using an extremum principle. Arch. Ration. Mech. Anal. 162(2), 137–177 (2002)

    Article  MathSciNet  Google Scholar 

  21. Govindjee, S., Hall, G.J.: A computational model for shape memory alloys. Int. J. Solids Struct. 37(5), 735–760 (2000)

    Article  Google Scholar 

  22. Govindjee, S., Kasper, E.P.: Computational aspects of one-dimensional shape memory alloy modeling with phase diagrams. Comput. Methods Appl. Mech. Eng. 171(3), 309–326 (1999)

    Article  Google Scholar 

  23. Stupkiewicz, S., Petryk, H.: Modelling of laminated microstructures in stress-induced martensitic transformations. J. Mech. Phys. Solids 50(11), 2303–2331 (2002)

    Article  MathSciNet  Google Scholar 

  24. Stein, E., Sagar, G.: Theory and finite element computation of cyclic martensitic phase transformation at finite strain. Int. J. Numer. Methods Eng. 74(1), 1–31 (2008)

    Article  MathSciNet  Google Scholar 

  25. Saint-Sulpice, L., Arbab Chirani, S., Calloch, S.: A 3D super-elastic model for shape memory alloys taking into account progressive strain under cyclic loadings. Mech. Mater. 41(1), 12–26 (2009)

    Article  Google Scholar 

  26. Abeyaratne, R., Kim, S.J.: Cyclic effects in shape-memory alloys: a one-dimensional continuum model. Int. J. Solids Struct. 34(25), 3273–3289 (1997)

    Article  Google Scholar 

  27. Hartl, D.J., Chatzigeorgiou, G., Lagoudas, D.C.: Three-dimensional modeling and numerical analysis of rate-dependent irrecoverable deformation in shape memory alloys. Int. J. Plasticity 26(10), 1485–1507 (2010)

    Article  Google Scholar 

  28. Auricchio, F., Reali, A., Stefanelli, U.: A three-dimensional model describing stress-induced solid phase transformation with permanent inelasticity. Int. J. Plasticity 23(2), 207–226 (2007)

    Article  Google Scholar 

  29. Bo, Z., Lagoudas, D.C.: Thermomechanical modeling of polycrystalline SMAs under cyclic loading, part III: evolution of plastic strains and two-way shape memory effect. Int. J. Eng. Sci. 37(9), 1175–1203 (1999)

    Article  Google Scholar 

  30. Lagoudas, D.C., Entchev, P.B.: Modeling of transformation-induced plasticity and its effect on the behavior of porous shape memory alloys. part I: constitutive model for fully dense SMAs. Mech. Mater. 36(9), 865–892 (2004)

    Article  Google Scholar 

  31. Bartel, T., Osman, M., Menzel, A.: A phenomenological model for the simulation of functional fatigue in shape memory alloy wires. Meccanica 1–16 (2016)

  32. Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H., Lexcellent, C.: Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech. Mater. 19(4), 281–292 (1995)

    Article  Google Scholar 

  33. Lexcellent, C., Bourbon, G.: Thermodynamical model of cyclic behaviour of Ti–Ni and Cu–Zn–Al shape memory alloys under isothermal undulated tensile tests. Mech. Mater. 24(1), 59–73 (1996)

    Article  Google Scholar 

  34. Carstensen, C., Hackl, K., Mielke, A.: Non-convex potentials and microstructures in finite-strain plasticity. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 458(2018), 299–317 (2002)

    Article  MathSciNet  Google Scholar 

  35. Hackl, K., Fischer, F.D.: On the relation between the principle of maximum dissipation and inelastic evolution given by dissipation potentials. Proc. R. Soc. A Math. Phys. Eng. Sci. 464(2089), 117–132 (2008)

    Article  MathSciNet  Google Scholar 

  36. Junker, P., Makowski, J., Hackl, K.: The principle of the minimum of the dissipation potential for non-isothermal processes. Continuum Mech. Thermodyn. 26(3), 259–268 (2014)

    Article  MathSciNet  Google Scholar 

  37. Junker, P.: A novel approach to representative orientation distribution functions for modeling and simulation of polycrystalline shape memory alloys. Int. J. Numer. Methods Eng. 98(11), 799–818 (2014)

    Article  MathSciNet  Google Scholar 

  38. Hackl, K., Heinen, R.: A micromechanical model for pretextured polycrystalline shape-memory alloys including elastic anisotropy. Continuum Mech. Thermodyn. 19(8), 499–510 (2008)

    Article  MathSciNet  Google Scholar 

  39. Govindjee, S., Hackl, K., Heinen, R.: An upper bound to the free energy of mixing by twin-compatible lamination for n-variant martensitic phase transformations. Continuum Mech. Thermodyn. 18(7–8), 443–453 (2007)

    Article  MathSciNet  Google Scholar 

  40. Waimann, J., Junker, P., Hackl, K.: A coupled dissipation functional for modeling the functional fatigue in polycrystalline shape memory alloys. Eur. J. Mech. A Solids 55, 110–121 (2016)

    Article  MathSciNet  Google Scholar 

  41. Junker, P.: An accurate, fast and stable material model for shape memory alloys. Smart Mater. Struct. 23(11), 115,010 (2014)

    Article  Google Scholar 

  42. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method: Solid Mechanics, vol. 2. Butterworth-heinemann (2000)

  43. Wriggers, P.: Nonlinear Finite Element Methods, vol. 4. Springer, Berlin (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Waimann.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waimann, J., Hackl, K. & Junker, P. Variational Modeling and Finite-Element Simulation of Functional Fatigue in Polycrystalline Shape Memory Alloys. J Optim Theory Appl 184, 98–124 (2020). https://doi.org/10.1007/s10957-019-01476-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01476-0

Keywords

Navigation