Skip to main content
Log in

Optimal Synthesis of the Zermelo–Markov–Dubins Problem in a Constant Drift Field

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

We consider the optimal synthesis of the Zermelo–Markov–Dubins problem, that is, the problem of steering a vehicle with the kinematics of the Isaacs–Dubins car in minimum time in the presence of a drift field. By using standard optimal control tools, we characterize the family of control sequences that are sufficient for complete controllability and necessary for optimality for the special case of a constant field. Furthermore, we present a semianalytic scheme for the characterization of an optimal synthesis of the minimum-time problem. Finally, we establish a direct correspondence between the optimal syntheses of the Markov–Dubins and the Zermelo–Markov–Dubins problems by means of a discontinuous mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Dubins, L.E.: On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal positions and tangents. Am. J. Math. 79(3), 497–516 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. Isaacs, R.: Games of pursuit. RAND Report P-257, RAND Corporation, Santa Monica, CA (1951)

  3. Patsko, V.S., Turova, V.L.: Numerical study of the “homicidal chauffeur” differential game with the reinforced pursuer. Game Theory Appl. 12(8), 123–152 (2007)

    MathSciNet  Google Scholar 

  4. Zermelo, E.: Über das Navigationproble bei ruhender oder veränderlicher Windverteilung. Z. Angew. Math. Mech. 11(2), 114–124 (1931)

    Article  Google Scholar 

  5. Carathéodory, C.: Calculus of Variations and Partial Differential Equations of First Order, 3rd edn. Am. Math. Soc., Washington (1999)

    Google Scholar 

  6. Sussmann, H.J.: The Markov–Dubins problem with angular acceleration control. In: Proceedings of 36th IEEE Conference on Decision and Control, San Diego, CA, pp. 2639–2643 (1997)

    Chapter  Google Scholar 

  7. Bakolas, E., Tsiotras, P.: Optimal synthesis of the asymmetric sinistral/dextral Markov–Dubins problem. J. Optim. Theory Appl. 150(2), 233–250 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Reeds, A.J., Shepp, R.A.: Optimal paths for a car that goes both forward and backwards. Pac. J. Math. 145(2), 367–393 (1990)

    Article  MathSciNet  Google Scholar 

  9. Sussmann, H.J.: Shortest 3-dimensional path with a prescribed curvature bound. In: Proceedings of 34th IEEE Conference on Decision and Control, New Orleans, LA, pp. 3306–3312 (1995)

    Google Scholar 

  10. Vendittelli, M., Laumond, J.-P., Nissoux, C.: Obstacle distance for car-like robots. IEEE Trans. Robot. Autom. 15(4), 678–691 (1999)

    Article  Google Scholar 

  11. Chitour, Y., Sigalotti, M.: Dubins’ problem on surfaces. I. Nonnegative curvature. J. Geom. Anal. 15(4), 565–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Sigalotti, M., Chitour, Y.: On the controllability of the Dubins’ problem for surfaces. II. Negative curvature. SIAM J. Control Optim. 45(2), 457–482 (2006)

    Article  MathSciNet  Google Scholar 

  13. McGee, T.G., Hedrick, J.K.: Optimal path planning with a kinematic airplane model. J. Guid. Control Dyn. 30(2), 629–633 (2007)

    Article  Google Scholar 

  14. Bakolas, E., Tsiotras, P.: On the generation of nearly optimal, planar paths of bounded curvature. In: Proceedings of the 2009 American Control Conference, St. Louis, MO, June 10–12, 2010, pp. 385–390 (2010)

    Google Scholar 

  15. Giordano, P.L., Vendittelli, M.: Shortest paths to obstacles for a polygonal Dubins car. IEEE Trans. Robot. 25(5), 1184–1191 (2009)

    Article  Google Scholar 

  16. Dolinskaya, I.S.: Optimal path finding in direction, location and time dependent environments. Ph.D. Thesis, The University of Michigan (2009)

  17. Techy, L., Woolsey, C.A.: Minimum-time path-planning for unmanned aerial vehicles in steady uniform winds. J. Guid. Control Dyn. 32(6), 1736–1746 (2009)

    Article  Google Scholar 

  18. Bakolas, E., Tsiotras, P.: Time-optimal synthesis for the Zermelo–Markov–Dubins problem: the constant wind case. In: Proceedings of the 2010 American Control Conference, Baltimore, MD, June 30–July 2, 2010, p. 6163 (2010)

    Google Scholar 

  19. Glizer, V.Y.: Optimal planar interception with fixed end conditions: a closed-form solution. J. Optim. Theory Appl. 88(3), 503–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Glizer, V.Y.: Optimal planar interception with fixed end conditions: approximate solutions. J. Optim. Theory Appl. 93(1), 1–25 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Pecsvaradi, T.: Optimal horizontal guidance law for aircraft in the terminal area. IEEE Trans. Autom. Control 17(6), 763–772 (1972)

    Article  MathSciNet  Google Scholar 

  22. Bui, X.-N., Boissonnat, J.D.: The shortest paths synthesis for nonholonomic robots moving forwards. Research Note 2153. Institut National de Recherche en Informatique et en Automatique, Sophia-Antipolis, France (1993)

  23. Patsko, V.S., Pyatko, S.G., Fedotov, A.A.: Three-dimensional reachability set for a nonlinear control system. J. Comput. Syst. Sci. Int. 42(3), 320–328 (2003)

    MathSciNet  MATH  Google Scholar 

  24. Cesari, M.: Optimization—Theory and Applications. Problems with Ordinary Differential Equations. Springer, New York (1983)

    MATH  Google Scholar 

  25. Sussmann, H.J., Tang, G.: Shortest paths for the Reeds-Shepp car: a worked out example of the use of geometric tecnhiques in nonlinear optimal control. Research Note SYCON-91-10, Rutgers University, New Brunswick, NJ (1991)

  26. Thomaschewski, B.: Dubins’ problem for the free terminal direction, pp. 1–14 (2001). Preprint

  27. Jurdjevic, V.: Geometric Control Theory. Cambridge University Press, New York (1997)

    MATH  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by NASA (award no. NNX08AB94A). E. Bakolas also acknowledges support from the A. Onassis Public Benefit Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Tsiotras.

Additional information

Communicated by Felix L. Chernousko.

Appendix A

Appendix A

1.1 A.1 \(\mathsf{b}^{+}_{\alpha}\mathsf{s}_{\beta}\mathsf {b}^{+}_{\gamma } [\mathsf{b}^{-}_{\alpha}\mathsf{s}_{\beta}\mathsf {b}^{-}_{\gamma } ]\) Paths

The coordinates x f , y f of a state in ℜZMD(b + sb +;θ f )[ℜZMD(b sb ;θ f )], can be expressed as functions of the parameters α and β as follows:

(27)
(28)

where T f =α+β+γ, and \(\gamma/\rho= (\theta_{\mathsf{f}}- \alpha/\rho) \operatorname{mod}2\pi [ \gamma/\rho= (2\pi-\theta_{\mathsf{f}}-\alpha/\rho) \operatorname{mod}2\pi ]\).

Conversely, given a state (x f ,y f ,θ f )∈ℜZMD(b + sb +;θ f )[ℜZMD(b sb ;θ f )], we can determine (α,β)∈[0,2πρ]×[0,∞[. In particular, after some algebraic manipulation, it follows that β satisfies the following quadratic equation, which is decoupled from α,

(29)

where \(A(x_{\mathsf{f}},\theta_{\mathsf{f}}) = x_{\mathsf{f}}- [+] \rho\sin\theta_{\mathsf{f}}- w_{x} \rho \hat{\theta_{\mathsf{f}}}\), \(B(y_{\mathsf{f}},\theta_{\mathsf{f}}) = [-]y_{\mathsf{f}}+ \rho (\cos\theta_{\mathsf{f}}- 1) -[+] w_{y} \rho\hat{\theta_{\mathsf{f}}}\), and

$$ \hat{\theta}_{\mathsf{f}}= \begin{cases} \theta_{\mathsf{f}}[2\pi- \theta_{\mathsf{f}}], & \mathrm{if}\ \alpha\leq\rho\theta_{\mathsf{f}}[\alpha\leq(2\pi -\theta_{\mathsf{f}})\rho],\\ 2\pi+ \theta_{\mathsf{f}}[4\pi-\theta_{\mathsf{f}}], & \mathrm {if}\ \alpha > \rho\theta_{\mathsf{f}}[\alpha> (2\pi-\theta_{\mathsf{f}})\rho]. \end{cases} $$
(30)

Note that for each (x f ,y f ,θ f )∈ℜZMD(b + sb +;θ f )[ℜZMD(b sb ;θ f )], there exist at most two solutions of (29). If β is one solution of (29), then α is determined with back substitution in Eqs. (27)–(28). In particular, after some algebraic manipulation, it follows that \(\alpha= \hat{\alpha}\rho\), where \(\hat{\alpha}\in[0,2\pi]\) satisfies

(31)

when β≠0, whereas α=ρθ f  [ρ(2πθ f )], otherwise. In this way, for a given (x f ,y f ,θ f )∈P(θ f ), we find pairs (α,β) and the corresponding final time T f (b + sb +)[T f (b sb )]=α+β+γ(α), and subsequently, we associate the state (x f ,y f ,θ f )∈P(θ f ) with the pair (α ,β ) that gives the minimum time T f (b + sb +)[T f (b sb )].

1.2 A.2 \(\mathsf{b}^{+}_{\alpha}\mathsf{s}_{\beta}\mathsf {b}^{-}_{\gamma } [\mathsf{b}^{-}_{\alpha}\mathsf{s}_{\beta}\mathsf {b}^{+}_{\gamma} ]\) Paths

If (x f ,y f ,θ f )∈ℜZMD(b + sb ;θ f )[ℜZMD(b sb +;θ f )], then

(32)
(33)

where \(T_{\mathsf{f}}= \alpha+ \beta+ \gamma,~\gamma/\rho= (\alpha /\rho- \theta_{\mathsf{f}}) \operatorname{mod}2\pi~[\gamma/\rho= (\alpha/\rho+ \theta_{\mathsf{f}}) \operatorname{mod}2\pi ]\).

Given a state (x f ,y f ,θ f )∈ℜZMD(b + sb ;θ f )[ℜZMD(b sb +;θ f )], it can be shown that α satisfies the following transcendental equation (decoupled from β)

(34)

where

and where

$$ \hat{\theta}_{\mathsf{f}}= \begin{cases} \theta_{\mathsf{f}}, & \mathrm{if}\ \alpha\geq \rho\theta_{\mathsf{f}} [ \alpha\leq\rho(2\pi- \theta_{\mathsf{f}}) ],\\ \theta_{\mathsf{f}}-2\pi, & \mathrm{if}\ \alpha< \rho\theta_{\mathsf{f}} [ \alpha> \rho(2\pi- \theta_{\mathsf{f}}) ]. \end{cases} $$
(35)

Furthermore, it can be shown that β satisfies the following equation:

(36)

1.3 A.3 \(\mathsf{b}^{+}_{\alpha}\mathsf{b}^{-}_{\beta}\mathsf {b}^{+}_{\gamma} [ \mathsf{b}^{-}_{\alpha}\mathsf{b}^{+}_{\beta }\mathsf{b}^{-}_{\gamma} ]\) and \(\mathsf{b}^{+}_{\alpha}\tilde{\mathsf{b}}^{-}_{\beta}\mathsf {b}^{+}_{\gamma} [ \mathsf{b}^{-}_{\alpha}\tilde{\mathsf{b}}^{+}_{\beta}\mathsf {b}^{-}_{\gamma} ]\) Paths

The coordinates of a state (x f ,y f ,θ f ) in ℜZMD(b + b b +;θ f )[ℜZMD(b b + b ;θ f )] or \(\mathfrak{R}_{\mathrm{ZMD}}(\mathsf{b}^{+}\tilde{\mathsf{b}}{}^{-}\mathsf {b}^{+};\theta_{\mathsf{f}}) [ \mathfrak{R}_{\mathrm{ZMD}}(\mathsf{b}^{-}\tilde{\mathsf{b}}{}^{+}\mathsf {b}^{-};\theta_{\mathsf{f}}) ]\) are given by

(37)
(38)

where \(T_{\mathsf{f}}= \alpha+ \beta+ \gamma,~\gamma/\rho= (\theta_{\mathsf{f}}-\alpha/\rho+ \beta/\rho) \operatorname{mod}2\pi [ \gamma/\rho= (-\theta_{\mathsf{f}}-\alpha/\rho+ \beta/\rho) \operatorname{mod}2\pi ]\).

Conversely, given (x f ,y f ,θ f ) in ℜZMD(b + b b +;θ f )[ℜZMD(b b + b ;θ f )] or \(\mathfrak{R}_{\mathrm{ZMD}}(\mathsf{b}^{+}\tilde{\mathsf {b}}^{-}\mathsf{b}^{+};\theta_{\mathsf{f}}) [ \mathfrak{R}_{\mathrm{ZMD}}(\mathsf{b}^{-}\tilde{\mathsf{b}}{}^{+}\mathsf {b}^{-};\theta_{\mathsf{f}}) ]\), it follows after some algebra that β satisfies the following transcendental equation, which is decoupled from α,

(39)

where

and

$$ \hat{\theta_{\mathsf{f}}} = \begin{cases}\theta_{\mathsf{f}}, & \mathrm{if}\ 0\leq[-]\theta_{\mathsf{f}}-\frac{\alpha}{\rho} +\frac{\beta}{\rho} <2\pi, \\[4pt] -2\pi[-4\pi] + \theta_{\mathsf{f}}, & \mathrm{if}\ 2\pi[-4\pi ]\leq [-]\theta_{\mathsf{f}}- \frac{\alpha}{\rho} + \frac{\beta}{\rho} < 4\pi[-2\pi], \\[4pt] [-]2\pi+ \theta_{\mathsf{f}}, & \mathrm{if}\ -2\pi\leq[-]\theta_{\mathsf{f}}- \frac{\alpha}{\rho} + \frac{\beta}{\rho} <0. \end{cases} $$

Given β∈[0,2πρ], it follows after some algebraic manipulation that α satisfies

(40)

where M(β;x f ,θ f )=A(x f ,θ f )−2βw x , N(β;y f ,θ f )=B(y f ,θ f )+[−]2βw y .

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakolas, E., Tsiotras, P. Optimal Synthesis of the Zermelo–Markov–Dubins Problem in a Constant Drift Field. J Optim Theory Appl 156, 469–492 (2013). https://doi.org/10.1007/s10957-012-0128-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0128-0

Keywords

Navigation