Skip to main content
Log in

Optimal Design of Brittle Composite Materials: a Nonsmooth Approach

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

Our goal is to design brittle composite materials yielding maximal energy dissipation for a given static load case. We focus on the effect of variation of fiber shapes on resulting crack paths and thus on the fracture energy. To this end, we formulate a shape optimization problem, in which the cost function is the fracture energy and the state problem consists in the determination of the potentially discontinuous displacement field in the two-dimensional domain. Thereby, the behavior at the crack surfaces is modeled by cohesive laws. We impose a nonpenetration condition to avoid interpenetration of opposite crack sides. Accordingly, the state problem is formulated as variational inequality. This leads to potential nondifferentiability of the shape-state mapping. For the numerical solution, we derive first-order information in the form of subgradients. We conclude the article by numerical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kohn, R., Strang, G.: Optimal design and relaxation of variational problems. Commun. Pure Appl. Math. 39(1), 113–137 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bendsøe, M., Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  Google Scholar 

  3. Jog, S., Haber, R., Bendsøe, M.: A displacement based topology design method with self-adaptive layered materials. In: Bendsøe, M., Mota Scares, C. (eds.) Topology Design of Structures, pp. 219–238. Kluwer, Dordrecht (1992)

    Google Scholar 

  4. Allaire, G., Kohn, R.: Optimal design for minimum weight and compliance in plane stress using extremal microstructures. Eur. J. Mech. A, Solids 12(6), 839–878 (1993)

    MathSciNet  MATH  Google Scholar 

  5. Tartar, L.: Estimation fines des coefficients homogeneises. In: Kree, P. (ed.) Ennio de Giorgi’s Colloquium, pp. 168–187. Pitman, London (1985)

    Google Scholar 

  6. Francfort, G., Murat, F.: Homogenization and optimal bounds in linear elasticity. Arch. Ration. Mech. Anal. 94, 307–334 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Gibiansky, L., Cherkaev, A.: Microstructures of composites of extremal rigidity and exact bounds on associated energy density. In: Cherkaev, A., Kohn, R. (eds.) Topics in the Mathematical Modelling of Composite Materials. Progress in Nonlinear Differential Equations an Their Applications, vol. 31B, pp. 273–317. Birkhauser Boston, Cambridge (1997)

    Chapter  Google Scholar 

  8. Milton, G.: On characterizing the set of possible effective tensors of composites: the variational method and the translation method. Commun. Pure Appl. Math. 43, 63–125 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Allaire, G., Kohn, R.: Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials. Q. Appl. Math. 51, 643–674 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Pedersen, P.: On optimal shapes in materials and structures. Struct. Multidiscip. Optim. 19, 169–182 (2000)

    Article  Google Scholar 

  11. Hild, P., Münch, A., Ousset, Y.: On the active control of crack growth in elastic media. Comput. Methods Appl. Mech. Eng. 198(3–4), 407–419 (2008)

    Article  MATH  Google Scholar 

  12. Khludnev, A., Leugering, G.: On elastic bodies with thin rigid inclusions and cracks. Math. Methods Appl. Sci. 33(16), 1955–1967 (2010)

    MathSciNet  MATH  Google Scholar 

  13. Münch, A., Pedregal, P.: Relaxation of an optimal design problem in fracture mechanic: the anti-plane case. ESAIM Control Optim. Calc. Var. 16, 719–743 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Yin, X., Travitzky, N., Greil, P.: Three-dimensional printing of nanolaminated Ti3AlC2 toughened TiAl3–Al2O3 composites. J. Am. Ceram. Soc. 90(7), 2128–2134 (2007)

    Article  Google Scholar 

  15. Kato, J.: Material optimization for fiber reinforced composites applying a damage formulation. Ph.D. thesis, Institut für Baustatik und Baudynamik der Universität Stuttgart (2010)

  16. Kato, J., Lipka, A., Ramm, E.: Multiphase material optimization for fiber reinforced composites with strain softening. Struct. Multidiscip. Optim. 39, 63–81 (2009)

    Article  Google Scholar 

  17. Kato, J., Ramm, E.: Optimization of fiber geometry for fiber reinforced composites considering damage. Finite Elem. Anal. Des. 46, 401–415 (2010)

    Article  Google Scholar 

  18. Kovtunenko, V.: Nonconvex problem for crack with nonpenetration. Z. Angew. Math. Mech. 85(4), 242–251 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khludnev, A., Kovtunenko, V.: Analysis of Cracks in Solids. WIT Press, Ashurst (1999)

    Google Scholar 

  20. Benedict, B., Sokolowski, J., Zolesio, J.: Shape optimization for contact problems. In: Thoft-Christensen, P. (ed.) System Modelling and Optimization. Lecture Notes in Control and Information Sciences, vol. 59, pp. 790–799. Springer, Berlin (1984)

    Chapter  Google Scholar 

  21. Sokolowski, J., Zolesio, J.: Shape sensitivity analysis of contact problem with prescribed friction. Non-Linear Anal. 12, 1399–1411 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sokolowski, J.: Shape sensitivity analysis of nonsmooth variational problems. In: Zolésio, J. (ed.) Boundary Control and Boundary Variations. Lecture Notes in Control and Information Sciences, vol. 100, pp. 265–285. Springer, Berlin (1988)

    Chapter  Google Scholar 

  23. Inglis, H., Geubelle, P., Matous, K., Tan, H., Huang, Y.: Cohesive modeling of dewetting in particulate composites: micromechanics vs. multiscale finite element analysis. Mech. Mater. 39(6), 580–595 (2007)

    Article  Google Scholar 

  24. Prechtel, M., Leugering, G., Steinmann, P., Stingl, M.: Towards optimization of crack resistance of composite materials by adjustment of fiber shapes. Eng. Fract. Mech. 78, 944–960 (2011)

    Article  Google Scholar 

  25. Haslinger, J., Maekinen, R.: Introduction to Shape Optimization. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  26. Hintermüller, M., Laurain, A.: Optimal shape design subject to elliptic variational inequalities. SIAM J. Control Optim. 49(3), 1015–1047 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, G., Han, J., Zhang, J.: Exact penalty functions for convex bilevel programming problems. J. Optim. Theory Appl. 110(3), 621–643 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Outrata, J., Kocvara, M., Zowe, J.: Nonsmooth Approach to Optimization Problems with Equilibrium Constraints. Kluwer, Dordrecht (1998)

    MATH  Google Scholar 

  29. Prechtel, M., Leiva Ronda, P., Janisch, R., Hartmaier, A., Leugering, G., Steinmann, P., Stingl, M.: Simulation of fracture in heterogeneous elastic materials with cohesive zone models. Int. J. Fract. 168, 15–29 (2011)

    Article  Google Scholar 

  30. Leugering, G., Prechtel, M., Steinmann, P., Stingl, M.: A cohesive crack propagation model: mathematical theory and numerical solution. Commun. Pure Appl. Anal. (2011, accepted for publication)

  31. Beremlijski, P., Haslinger, J., Kocvara, M., Outrata, J.: Shape optimization in contact problems with coulomb friction. SIAM J. Optim. 13, 561–587 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Haslinger, J., Vlach, O.: Signorini problem with a solution dependent coefficient of friction (model with given friction): approximation and numerical realization. Appl. Math. 50, 153–171 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  33. Geissler, G., Kaliske, M.: Time-dependent cohesive zone modelling for discrete fracture simulation. Eng. Fract. Mech. 77, 153–169 (2010)

    Article  Google Scholar 

  34. Langtangen, H.: Computational Partial Differential Equations: Numerical Methods and Diffpack Programming. Springer, Berlin (2003)

    Google Scholar 

  35. Wächter, A., Biegler, L.: On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Program. 106(1), 25–57 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  36. Sundaram, R.: A First Course in Optimization Theory. Cambridge University Press, Cambridge (1996)

    Book  MATH  Google Scholar 

  37. Schramm, H., Zowe, J.: A version of the bundle idea for minimizing a nonsmooth function: conceptual idea, convergence analysis, numerical results. SIAM J. Optim. 2(1), 121–151 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gill, P.E., Murray, W., Saunders, M.S.: SNOPT: an SQP algorithm for large-scale constrained optimization. SIAM Rev. 47(1), 99–131 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Charlotte, M., Francfort, G., Marigo, J.J., Truskinovsky, L.: Revisiting brittle fracture as an energy minimization problem: comparison of Griffith and Barenblatt surface energy models. In: Benallal, A. (ed.) Proceedings of the Symposium on Continuous Damage and Fracture, pp. 1–12. Elsevier, Paris (2000)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the funding of the German Research Council (DFG), which, within the framework of its ‘Excellence Initiative’ supports the Cluster of Excellence ‘Engineering of Advanced Materials’ at the University of Erlangen-Nuremberg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Stingl.

Additional information

Communicated by Giulio Maier.

Appendix: Shape Derivatives of Different Quantities

Appendix: Shape Derivatives of Different Quantities

In the following, we denote by c the number of continuous elements in the finite element mesh. Furthermore, we denote the four nodes of one rectangular (possibly cohesive) element by X 1,X 2,X 3,X 4 with X i =(X i1,X i2)T, i=1,…,4. Because of the chosen discretization of the design space, the values of \(X^{k}_{ij}\), i=1,…,4, j=1,2, k=1,…,c+m depend linearly, and thus continuously differentiable on the shape variable γ. Therefore, the constant shape derivatives \(X^{\prime k}_{ij}\), i=1,…,4, j=1,2, k=1,…,c+m can be easily determined at the beginning of the shape optimization process. We follow [25] for the derivation of the shape sensitivities for τ′, ν′ as well as for W′, \(\boldsymbol{A}'_{\mathrm{stif}}\), \(\boldsymbol{f}'_{\mathrm{coh}}\) and \(\boldsymbol{f}'_{\lambda}\). We notice that our problem structure is more involved than pure elasticity problems discussed in [25].

The unit vector tangential to a cohesive element is determined by its four nodes as

(52)

Thus, the unit normal vector ν=(−τ 2,τ 1)T is dependent on the four nodes by

(53)

with

(54)

The shape derivative of the normal vector ν of a cohesive element with the nodes (X 1,X 2,X 3,X 4) can be calculated as

(55)

with

(56)

and \(\frac{d\nu_{i}}{dX_{3j}}=\frac{d\nu_{i}}{dX_{1j}}\), \(\frac{d\nu_{i}}{dX_{4j}}=\frac{d\nu_{i}}{dX_{2j}}\), i=1,2, j=1,2. The shape derivative of the tangential vector τ′ can be calculated in a similar fashion.

The determinant of the Jacobian of the transformation from a cohesive element to the reference element is given by

(57)

and its shape derivative is

(58)

The shape derivative of the stiffness matrix \(\boldsymbol{A}'_{\mathrm{stif}}\) is assembled elementwise from the local element matrices \(\boldsymbol{A}^{\prime e}_{\mathrm{stif}}\). Writing Hooke’s law σ ij (u)=c ijkl e ij (u) in a compact form

(59)

with

(60)

the local stiffness matrices \(\boldsymbol{A}^{e}_{\mathrm{stif}}\) are calculated as

(61)

Here, the matrices L contain the derivatives of the basis functions (compare [34]). These matrices L are evaluated at four integration points χ ei , i=1,…,4, respectively, and |I e | is the determinant of the Jacobian matrix for the transformation to the continuous reference element (compare [25]). The shape derivatives \(\boldsymbol{A}^{\prime e}_{\mathrm{stif}}\) are then given by

(62)

with

(63)

and

(64)
(65)

Moreover, the shape derivative of the determinant of the Jacobian of the transformation map from a continuous element to the reference element is given by

(66)

The shape derivative of the fracture energy W for given solution \((\bar{\boldsymbol{u}}_{d},\bar{\boldsymbol{\lambda}}_{d})\) of the state problem can be calculated as

(67)

The shape derivative of f coh can be assembled elementwise from the local force terms \(\boldsymbol{f}^{\prime e}_{\mathrm{coh}}\), with

(68)

Finally, the shape derivative of f λ is given by

(69)

We notice that the matrices B do not depend on the shape variable because of the use of isoparametric elements (see [25] for further details).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prechtel, M., Leugering, G., Steinmann, P. et al. Optimal Design of Brittle Composite Materials: a Nonsmooth Approach. J Optim Theory Appl 155, 962–985 (2012). https://doi.org/10.1007/s10957-012-0094-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-012-0094-6

Keywords

Navigation