Skip to main content
Log in

New Type of Generalized Vector Quasiequilibrium Problem

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In this paper, we introduce a new type of vector quasiequilibrium problem with set-valued mappings and moving cones. By using the scalarization method and fixed-point theorem, we obtain its existence theorem. As applications, we derive some existence theorems for vector variational inequalities and vector complementarity problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Giannessi, F., Mastroeni, G., Pellegrini, L.: On the theory of vector optimization and variational inequalities. Image space analysis and separation. In: Giannessi, F. (ed.) Vector Variational Inequalities and Vector Equilibria: Mathematical Theories, pp. 153–215. Kluwer Academic, Dordrecht (2000)

    Google Scholar 

  2. Giannessi, F. (ed.): Vector Variational Inequalities and Vector Equilibria: Mathematical Theories. Kluwer Academic, Dordrecht (2000)

    MATH  Google Scholar 

  3. Giannessi, F.: Theorems of the alternative, quadratic programs, and complementarity problems. In: Cottle, R.W., Giannessi, F., Lions, J.L. (eds.) Variational Inequalities and Complementarity Problems, pp. 151–186. Wiley, New York (1980)

    Google Scholar 

  4. Chen, G.Y., Yang, X.Q.: The vector complementarity problem and its equivalence with the weak minimal element in ordered spaces. J. Math. Anal. Appl. 153, 136–158 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Yang, X.Q.: Vector complementarity and minimal element problems. J. Optim. Theorem Appl. 77, 483–495 (1993)

    Article  MATH  Google Scholar 

  6. Daniilidis, A., Hadjisavvas, N.: Existence theorems for vector variational inequalities. Bull. Aust. Math. Soc. 54, 473–481 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fu, J.Y.: Simultaneous vector variational inequalities and vector implicit complementarity problem. J. Optim. Theory Appl. 93, 141–151 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  8. Huang, N.J., Li, J.: On vector implicit variational inequalities and complementarity problems. J. Glob. Optim. 34, 399–408 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Blum, E., Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. Stud. 63, 123–145 (1994)

    MATH  MathSciNet  Google Scholar 

  10. Chen, G.Y., Yang, X.Q., Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. Glob. Optim. 32, 451–466 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ansari, Q.H., Flores-Bazan, F.: Generalized vector quasi-equilibrium problems with applications. J. Math. Anal. Appl. 277, 246–256 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ansari, Q.H., Konnov, I.V., Yao, J.C.: On generalized vector equilibrium problems. Nonlinear Anal. (TMA) 47, 543–554 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ansari, Q.H., Konnov, I.V., Yao, J.C.: Characterizations of solutions for vector equilibrium problems. J. Optim. Theory Appl. 113, 435–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bianchi, M., Hadjisavvas, N., Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. Optim. Theory Appl. 92, 527–542 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fu, J.Y., Wan, A.H.: Generalized vector equilibrium problems with set-valued mappings. Math. Methods Oper. Res. 56, 259–268 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Konnov, I.V., Yao, J.C.: Existence of solutions for generalized vector equilibrium problems. J. Math. Anal. Appl. 233, 328–335 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Luc, D.T., Vargas, C.: A saddlepoint theorem for set-valued maps. Nonlinear Anal. 18, 1–7 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  18. Lin, L.J., Yu, Z.T.: On some equilibrium problems for multimaps. J. Comput. Appl. Math. 129, 171–183 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  19. Aubin, J.P., Ekeland, I.: Applied Nonlinear Analysis. Wiley, New York (1984)

    MATH  Google Scholar 

  20. Berge, C.: Topological Spaces. Oliver & Boyd LTD, Edinburgh (1963)

    MATH  Google Scholar 

  21. Tan, N.X.: Quasivariational inequalities in topological linear locally convex Hausdorff spaces. Math. Nachr. 122, 231–245 (1985)

    Article  MathSciNet  Google Scholar 

  22. Jahn, J.: Mathematical Vector Optimization in Partially Ordered Linear Spaces. Peter Lang, Frankfurt (1986)

    MATH  Google Scholar 

  23. Ferro, F.: A minimax theorem for vector valued functions. J. Optim. Theory Appl. 60, 19–31 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Yannelis, N.C., Prabhakar, N.D.: Existence of maximal elements and equilibria in linear topological spaces. J. Math. Econ. 12, 233–245 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  25. Fan, K.: A minimax inequality and applications. In: Shisha, O. (ed.) Inequalities, III, pp. 103–113. Academic, New York (1972)

    Google Scholar 

  26. Glicksberg, I.: A further generalization of the Kakutani fixed point theorem with application to Nash equilibrium points. Proc. Am. Math. Soc. 3, 170–174 (1952)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Y. Fu.

Additional information

Communicated by X.Q. Yang.

This work was supported by the National Natural Science Foundation of China. The authors are grateful to Professor X.Q. Yang and the referees for valuable comments and suggestions improving the original draft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fu, J.Y., Wang, S.H. & Huang, Z.D. New Type of Generalized Vector Quasiequilibrium Problem. J Optim Theory Appl 135, 643–652 (2007). https://doi.org/10.1007/s10957-007-9286-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-007-9286-x

Keywords

Navigation