Skip to main content

Advertisement

Log in

Using Smartphones as Experimental Tools—Effects on Interest, Curiosity, and Learning in Physics Education

  • Published:
Journal of Science Education and Technology Aims and scope Submit manuscript

Abstract

Smartphones as experimental tools (SETs) offer inspiring possibilities for science education, as their built-in sensors allow many different measurements, but until now, there has been little research that studies this approach. Due to current interest in their development, it seems necessary to provide empirical evidence about potential effects of SETs by a well-controlled study. For the present investigation, experiments were developed that use the smartphones’ acceleration sensors to investigate an important topic of classical mechanics (pendulum). A quasi-experimental repeated-measurement design, consisting of an experimental group using SETs (smartphone group, SG, NSG = 87) and a control group working with traditional experimental tools (CG, NCG = 67), was used to study the effects on interest, curiosity, and learning achievement. Moreover, various control variables were taken into account. With multiple-regression analyses and ANCOVA, we found significantly higher levels of interest in the SG (small to medium effect size). Pupils that were less interested at the beginning of the study profited most from implementing SETs. Moreover, the SG showed higher levels of topic-specific curiosity (small effect size). No differences were found for learning achievement. This means that the often-supposed cognitive disadvantage of distracting learners with technological devices did not lead to reduced learning, whereas interest and curiosity were apparently fostered. Moreover, the study contributes evidence that could reduce potential concerns related to classroom use of smartphones and similar devices (increased cognitive load, mere novelty effect). In sum, the study presents encouraging results for the under-researched topic of SET use in science classrooms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The newest version of SPARKvue can be found under the following link: http://itunes.apple.com/de/app/sparkvue/id361907181 (PASCO Scientific 2015). After the current study was finished, the app was relaunched, which is why the interface of the version that was used in the study looked different from the version that can be obtained in the App store now.

  2. Assertion reason task: multiple choice/true false item in combination with free text item asking for the reason behind the given answer (see, e.g., Williams 2007)

  3. For this analysis, the post-test mean is determined only from items that are also used in pre-test.

References

  • Adair, J. G., Sharpe, D., & Huynh, C. L. (1989). Hawthorne control procedures in educational experiments: a reconsideration of their use and effectiveness. Review of Educational Research, 59(2), 215–228.

    Article  Google Scholar 

  • Ainsworth, S. (2006). DeFT: a conceptual framework for considering learning with multiple representations. Learn Instr, 16(3), 183–198.

    Article  Google Scholar 

  • Alrasheedi, M., Capretz, L. F., & Raza, A. (2015). A systematic review of the critical factors for success of mobile learning in higher education (university students’ perspective). J Educ Comput Res, 52(2), 257–276.

    Article  Google Scholar 

  • Arnone, M. P., Small, R. V., Chauncey, S. A., & McKenna, H. P. (2011). Curiosity, interest and engagement in technology-pervasive learning environments: a new research agenda. Educ Technol Res Dev, 59(2), 181–198.

    Article  Google Scholar 

  • Bahtaji, M. A. A. (2015). Improving transfer of learning through designed context-based instructional materials. European Journal of Science and Mathematics Education, 3(3), 265–274.

    Google Scholar 

  • Baker, G. L., & Blackburn, J. A. (2005). The pendulum. A case study in physics. New York: Oxford University Press.

    Google Scholar 

  • Barkham, P., & Moss, S. (2012). Should mobile phones be banned from schools? The Guardian. https://www.theguardian.com/education/2012/nov/27/should-mobiles-be-banned-schools. Accessed 21 March 2017.

  • Beech, M. (2014). The pendulum paradigm. Boca Raton, Florida: Brown Waler Press.

    Google Scholar 

  • Beichner, R. J. (1996). The impact of video motion analysis on kinematics graph interpretation skills. Am J Phys, 64(10), 1272–1277.

    Article  Google Scholar 

  • Beland, L. P., & Murphy, R. (2015). Ill communication: technology, distraction & student performance. Centre for economic performance. http://cep.lse.ac.uk/pubs/download/dp1350.pdf. Accessed 21 March 2017.

  • Bennett, J., Lubben, F., & Hogarth, S. (2007). Bringing science to life: a synthesis of the research evidence on the effects of context-based and STS approaches to science teaching. Sci Educ, 91(3), 347–370.

    Article  Google Scholar 

  • Berlyne, D. E. (1978). Curiosity and learning. Motiv Emot, 2(2), 97–175.

    Article  Google Scholar 

  • Brasell, H. (1987). The effect of real-time laboratory graphing on learning graphic representations of distance and velocity. J Res Sci Teach, 24(4), 385–395.

    Article  Google Scholar 

  • Castro-Palacio, J. C., & Velázquez-Abad, L. (2013). Using a mobile phone acceleration sensor in physics experiments on free and damped harmonic oscillations. Am J Phys, 81(6), 472–475.

    Article  Google Scholar 

  • CBC News. (2015). Smartphones in the classroom: a teacher’s dream or nightmare? CBC News. http://www.cbc.ca/news/technology/smartphones-in-the-classroom-a-teacher-s-dream-or-nightmare-1.3211652. Accessed 21 March 2017.

  • Chandler, P., & Sweller, J. (1991). Cognitive load theory and the format of instruction. Cogn Instr, 8(4), 293–332.

    Article  Google Scholar 

  • Chevrier, J., Madani, L., Ledenmat, S., & Bsiesy, A. (2013). Teaching classical mechanics using smartphones. Phys Teach, 51(6), 376–377.

    Article  Google Scholar 

  • Crompton, H., Burke, D., & Gregory, K. H. (2017). The use of mobile learning in PK-12 education: A systematic review. Computers & Education, 110, 51–63.

  • Crompton, H., Burke, D., Gregory, K. H., & Gräbe, C. (2016). The use of mobile learning in science: a systematic review. J Sci Educ Technol, 25(2), 149–160.

    Article  Google Scholar 

  • DeWitt, J., & Storksdieck, M. (2008). A short review of school field trips: key findings from the past and implications for the future. Visitor Studies, 11(2), 181–197.

    Article  Google Scholar 

  • Ding, L., & Beichner, R. (2009). Approaches to data analysis of multiple-choice questions. Physical Review Special Topics—Physics Education Research, 5(2).

  • Falk, J., & Balling, J. (1979). Setting a neglected variable in science education: investigations into outdoor field trips. Edgewater, MD: Smithsonian Institution, Chesapeake Bay Center for Environment Studies.

    Google Scholar 

  • Forinash, K., & Wisman, R. F. (2012). Smartphones as portable oscilloscopes for physics labs. The Physics Teacher, 50(4), 242–243.

    Article  Google Scholar 

  • Fried, C. B. (2008). In-class laptop use and its effects on student learning. Computers & Education, 50(3), 906–914.

    Article  Google Scholar 

  • Gilbert, J. K., Bulte, A. M. W., & Pilot, A. (2011). Concept development and transfer in context-based science education. International Journal of Science Education, 33(6), 817–837.

    Article  Google Scholar 

  • Greenslade Jr., T. B. (2016). Whistling tea kettles, train whistles, and organ pipes. The Physics Teacher, 54(9), 518–519.

    Article  Google Scholar 

  • Harackiewicz, J. M., Barron, K. E., Tauer, J. M., Carter, S. M. & Elliot, A. J. (2000). Short-term and longterm consequences of achievement goals: Predicting interest and performance over time. Journal of educational psychology, 92(2), 316.

  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): results of empirical and theoretical research. In N. Meshkati & P. A. Hancock (Eds.), Human Mental Workload (Vol. 52, pp. 139–183). Elsevier.

  • Haßler, B., Major, L., & Hennessy, S. (2016). Tablet use in schools: a critical review of the evidence for learning outcomes. Journal of Computer Assisted Learning, 32(2), 139–156.

    Article  Google Scholar 

  • Hattie, J. (2008). Visible learning: a synthesis of over 800 meta-analyses relating to achievement. New York: Routledge.

    Google Scholar 

  • Hazel, E., Logan, P., & Gallagher, P. (2007). Equitable assessment of students in physics: importance of gender and language background. International Journal of Science Education, 19(4), 381–392.

    Article  Google Scholar 

  • Heller, K., & Perleth, C. (2000). Kognitiver Fähigkeitstest für 4.-12.Klassen, Revision (KFT 4-12+R). Göttingen: Hogrefe.

    Google Scholar 

  • Hidi, S., & Renninger, K. A. (2006). The four-phase model of interest development. Educational Psychologist, 41(2), 111–127.

    Article  Google Scholar 

  • Hirth, M., Kuhn, J., & Müller, A. (2015). Measurement of sound velocity made easy using harmonic resonant frequencies with everyday mobile technology. The Physics Teacher, 53(2), 120–121.

    Article  Google Scholar 

  • Hochberg, K., Gröber, S., Kuhn, J., & Müller, A. (2014). The spinning disc: studying radial acceleration and its damping process with smartphone acceleration sensors. Physics Education, 49(2), 137–140.

    Article  Google Scholar 

  • Hoffmann, L. (2002). Promoting girls’ interest and achievement in physics classes for beginners. Learning and Instruction, 12(4), 447–465.

    Article  Google Scholar 

  • Hwang, G. J., & Tsai, C. C. (2011). Research trends in mobile and ubiquitous learning: a review of publications in selected journals from 2001 to 2010. British Journal of Educational Technology, 42(4), E65–E70.

    Article  Google Scholar 

  • Jeffreys, B. (2015). Can a smartphone be a tool for learning? BBC News. http://www.bbc.com/news/education-34389063. Accessed 21 March 2017.

  • Klein, P., Hirth, M., Gröber, S., Kuhn, J., & Müller, A. (2014). Classical experiments revisited: smartphones and tablet PCs as experimental tools in acoustics and optics. Physics Education, 49(4), 412–418.

    Article  Google Scholar 

  • Klein, P., Kuhn, J., Müller, A., & Gröber, S. (2015). Video analysis exercises in regular introductory mechanics physics courses: effects of conventional methods and possibilities of mobile devices. In A. Kauertz, H. Ludwig, A. Müller, J. Pretsch, & W. Schnotz (Eds.), Multidisciplinary research on teaching and learning (pp. 270–288). Basingstoke: Palgrave Macmillan.

    Google Scholar 

  • Klein, P., Müller, A., & Kuhn, J. (2017). Assessment of representational competence in kinematics. Physical Review Special Topics—Physics Education Research, 13(1), 010132.

    Article  Google Scholar 

  • Koleza, E., & Pappas, J. (2008). The effect of motion analysis activities in a video-based laboratory in students’ understanding of position, velocity and frames of reference. International Journal of Mathematical Education in Science and Technology, 39(6), 701–723.

    Article  Google Scholar 

  • Kost-Smith, L. E., Pollock, S. J., & Finkelstein, N. D. (2010). Gender disparities in second-semester college physics: the incremental effects of a “smog of bias”. Physical Review Special Topics—Physics Education Research, 6(2), 020112.

  • Krapp, A. (2005). Basic needs and the development of interest and intrinsic motivational orientations. Learn Instr, 15(5), 381–395.

    Article  Google Scholar 

  • Kuhn, J. (2010). Authentische Aufgaben im theoretischen Rahmen von Instruktions- und Lehr-Lern-Forschung: Effektivität und Optimierung von Ankermedien für eine neue Aufgabenkultur im Physikunterricht. Wiesbaden: Vieweg+Teubner.

    Book  Google Scholar 

  • Kuhn, J., & Müller, A. (2014). Context-based science education by newspaper story problems: a study on motivation and learning effects. Perspectives in Science, 2(1–4), 5–21.

    Article  Google Scholar 

  • Kuhn, J., & Vogt, P. (2012). iPhysicsLabs (series), column editors’ note. The Physics Teacher, 50, 372–373.

    Article  Google Scholar 

  • Kuhn, J., & Vogt, P. (2013). Smartphones as experimental tools: different methods to determine the gravitational acceleration in classroom physics by using everyday devices. European Journal of Physics Education, 4(1), 16–27.

    Google Scholar 

  • Kuhn, J., & Vogt, P. (2015). Smartphones & Co. in physics education: effects of learning with new media experimental tools in acoustics. In W. Schnotz, A. Kauertz, H. Ludwig, A. Müller, & J. Pretsch (Eds.), Multidisciplinary research on teaching and learning (pp. 253–269). Basingstoke: Palgrave Macmillan UK.

    Google Scholar 

  • Kuhn, J., Molz, A., Gröber, S., & Frübis, J. (2014). iRadioactivity—possibilities and limitations for using smartphones and tablet PCs as radioactive counters. The Physics Teacher, 52(6), 351–356.

    Article  Google Scholar 

  • Lenhart, A. (2015). Teens, social media, and technology overview 2015. PewResearchCenter. http://www.pewinternet.org/2015/04/09/teens-social-media-technology-2015/#. Accessed 21 March 2017.

  • Litman, J. A., & Spielberger, C. D. (2003). Measuring epistemic curiosity and its diversive and specific components. Journal of Personality Assessment, 80(1), 75–86.

    Article  Google Scholar 

  • Main, S., & ORourke, J. (2011). “New directions for traditional lessons”: can handheld game consoles enhance mental mathematics skills? Australian Journal of Teacher Eduation, 36(2), 43–55.

    Google Scholar 

  • Mathews, J. (2015). Are smartphones dumbing down school, or are they vital learning tools? The Washington Post. https://www.washingtonpost.com/local/education/are-smartphones-dumbing-down-school-or-are-they-vital-learning-tools/2015/10/25/3e278ac8-7a27-11e5-b9c1-f03c48c96ac2_story.html?utm_term=.736cb682baa4. Accessed 21 March 2017.

  • Matthews, M. R., Gauld, C. F., & Stinner, A. (2005). The pendulum. Dordrecht, The Nederlands: Springer Science & Business Media.

    Book  Google Scholar 

  • Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educ Psychol, 38(1), 43–52.

    Article  Google Scholar 

  • Mazzella, A., & Testa, I. (2016). An investigation into the effectiveness of smartphone experiments on students’ conceptual knowledge about acceleration. Phys Educ, 51(5), 055010.

    Article  Google Scholar 

  • Miller, B. T., Krockover, G. H., & Doughty, T. (2013). Using iPads to teach inquiry science to students with a moderate to severe intellectual disability: a pilot study. Journal of Research in Science Teaching, 50(8), 887–911.

    Article  Google Scholar 

  • Ministerium für Bildung, Wissenschaft und Weiterbildung Rheinland Pfalz [MBWW]. (n.d.). Lehrplan Physik: Gymnasium Sek. II. Bildungsserver. https://lehrplaene.bildung-rp.de/no-cache/gehezu/startseite.html?tx_pitsdownloadcenter_pitsdownloadcenter%5Bcontroller%5D=Download&tx_pitsdownloadcenter_pitsdownloadcenter%5Baction%5D=forceDownload&tx_pitsdownloadcenter_pitsdownloadcenter%5Bfileid%5D=NzQ0NDc%3D. Accessed 21 March 2017.

  • Mitchell, M. (1993). Situational interest: Its multifaceted structure in the secondary school mathematics classroom. Journal of Educational Psychology 85(3), 424–436.

  • Molz, A. (2016). Verbindung von Schülerlabor und Schulunterricht – Auswirkungen auf Motivation und Kognition im Fach Physik. München: Verlag Dr. Hut.

    Google Scholar 

  • Monteiro, M., Cabeza, C., & Marti, A. C. (2014). Exploring phase space using smartphone acceleration and rotation sensors simultaneously. Eur J Phys, 35(4), 045013.

    Article  Google Scholar 

  • Monteiro, M., Vogt, P., Stari, C., Cabeza, C., & Marti, A. C. (2016). Exploring the atmosphere using smartphones. Phys Teach, 54(5), 308–309.

    Article  Google Scholar 

  • Moreno, R. (2005). Instructional technology—promise and pitfalls. In L. M. PytlikZillig, M. Bodvarsson, & R. Bruning (Eds.), Technology-based education (pp. 1–19). Greenwich, Conn.: IAP.

    Google Scholar 

  • Moshinsky, M., & Smirnov, Y. F. (1996). The harmonic oscillator in modern physics (Vol. 9). Amsterdam: Harwood Academic Publishers.

    Google Scholar 

  • Müller, R. (2006). Physik in interessanten Kontexten. Handreichung für die Unterrichtsentwicklung. https://www.tu-braunschweig.de/Medien-DB/ifdn-physik/physik-in-interessanten-kontexten-rmueller.pdf. Physik im Kontext. Accessed 21 March 2017.

  • Müller, A., Vogt, P., Kuhn, J., & Müller, M. (2015). Cracking knuckles—a smartphone inquiry on bioacoustics. The Physics Teacher, 53(5), 307–308.

    Article  Google Scholar 

  • Müller, A., Hirth, M., & Kuhn, J. (2016). Tunnel pressure waves—a smartphone inquiry on rail travel. The Physics Teacher, 54(2), 118–119.

    Article  Google Scholar 

  • National Science Foundation. (1983). Educating Americans for the 21st century: report of the National Science Board on pre-college education in mathematics, science and technology. Washington, DC: National Science Foundation.

    Google Scholar 

  • Naylor, F. D. (1981). A state-trait curiosity inventory. Australian Psychologist, 16(2), 172–183.

    Article  Google Scholar 

  • Newhouse, P., & Rennie, L. (2001). A longitudinal study of the use of student-owned portable computers in a secondary school. Computers & Education, 36(3), 223–243.

    Article  Google Scholar 

  • Organisation for Economic Co-operation and Development [OECD]. (2007). PISA 2006 (Vol. 2: Data). Pisa: OECD Publishing.

    Google Scholar 

  • Organisation for Economic Co-operation and Development [OECD]. (2015). Students, computers and learning: making the connection. Pisa: OECD Publishing.

    Google Scholar 

  • Osborne, J., Simon, S., & Collins, S. (2003). Attitudes towards science: a review of the literature and its implications. International Journal of Science Education, 25(9), 1049–1079.

    Article  Google Scholar 

  • Paas, F. G. W. C., van Merrienboer, J. J. G., & Adam, J. J. (1994). Measurement of cognitive load in instructional research. Perceptual and Motor Skills, 79(1), 419–430.

    Article  Google Scholar 

  • Parolin, S. O., & Pezzi, G. (2013). Smartphone-aided measurements of the speed of sound in different gaseous mixtures. The Physics Teacher, 51(8), 508–509.

    Article  Google Scholar 

  • PASCO Scientific. (2015). SPARKvue (Version 2.3.2). PASCO Scientific. https://itunes.apple.com/de/app/sparkvue/id361907181?mt=8. Accessed 21 March 2017.

  • Pimmer, C., Mateescu, M., & Gröhbiel, U. (2016). Mobile and ubiquitous learning in higher education settings. A systematic review of empirical studies. Computers in Human Behavior, 63, 490–501.

    Article  Google Scholar 

  • Ratcliffe, M., & Millar, R. (2009). Teaching for understanding of science in context: evidence from the pilot trials of the twenty first century science courses. Journal of Research in Science Teaching, 46(8), 945–959.

    Article  Google Scholar 

  • Reid, N., & Skryabina, E. A. (2002). Attitudes towards physics. Research in Science & Technological Education, 20(1), 67–81.

    Article  Google Scholar 

  • Sans, J. A., Manjón, F. J., Pereira, A. L. J., Gomez-Tejedor, J. A., & Monsoriu, J. A. (2013). Oscillations studied with the smartphone ambient light sensor. European Journal of Physics, 34(6), 1349–1354.

    Article  Google Scholar 

  • Shakur, A., & Sinatra, T. (2013). Angular momentum. The Physics Teacher, 51(9), 564–565.

    Article  Google Scholar 

  • Sharples, M., Taylor, J., & Vavoula, G. (2007). A theory of learning for the mobile age. In R. Andrews & C. Haythornthwaite (Eds.), The Sage handbook of eLearning research. London: Sage.

    Google Scholar 

  • Silva, N. (2012). Magnetic field sensor. The Physics Teacher, 50(6), 372–373.

    Article  Google Scholar 

  • Swarat, S., Ortony, A., & Revelle, W. (2012). Activity matters: understanding student interest in school science. Journal of Research in Science Teaching, 49(4), 515–537.

    Article  Google Scholar 

  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296.

    Article  Google Scholar 

  • Taasoobshirazi, G., & Carr, M. (2008). A review and critique of context-based physics instruction and assessment. Educational Research Review, 3(2), 155–167.

    Article  Google Scholar 

  • Tabachnik, B. G., & Fidell, L. S. (1996). Using multivaraite statistics. New York: Harper Collins College Publishers.

    Google Scholar 

  • Tho, S. W., Chan, K. W., & Yeung, Y. Y. (2015). Technology-enhanced physics programme for community-based science learning: innovative design and programme evaluation in a theme park. Journal of Science Education and Technology, 24(5), 580–594.

    Article  Google Scholar 

  • Thoms, L.-J., Colicchia, G., & Girwidz, R. (2013). Color reproduction with a smartphone. The Physics Teacher, 51(7), 440–441.

    Article  Google Scholar 

  • Thornton, R. K., & Sokoloff, D. R. (1990). Learning motion concepts using real-time microcomputer-based laboratory tools. American Journal of Physics, 58(9), 858–867.

    Article  Google Scholar 

  • Tornaría, F., Monteiro, M., & Marti, A. C. (2014). Understanding coffee spills using a smartphone. The Physics Teacher, 52(8), 502–503.

    Article  Google Scholar 

  • Tossell, C. C., Kortum, P., Shepard, C., Rahmati, A., & Zhong, L. (2014). You can lead a horse to water but you cannot make him learn: smartphone use in higher education. British Journal of Educational Technology, 46(4), 713–724.

    Article  Google Scholar 

  • Trowbridge, D. E., & McDermott, L. C. (1981). Investigation of student understanding of the concept of acceleration in one dimension. American Journal of Physics, 49(3), 242–253.

    Article  Google Scholar 

  • Uguroglu, M. E., & Walberg, H. J. (1979). Motivation and achievement: a quantitative synthesis. American Educational Research Journal, 16(4), 375–389.

    Article  Google Scholar 

  • van Bruggen, J. M., Kirschner, P. A., & Jochems, W. (2002). External representation of argumentation in CSCL and the management of cognitive load. Learn Instr, 12(1), 121–138.

    Article  Google Scholar 

  • Vogt, P., Kasper, L., & Burde, J. (2015). The sound of church bells: tracking down the secret of a traditional arts and crafts trade. The Physics Teacher, 53(7), 438–439.

    Article  Google Scholar 

  • von Stumm, S., Hell, B., & Chamorro-Premuzic, T. (2011). The hungry mind: intellectual curiosity is the third pillar of academic performance. Perspectives on Psychological Science, 6(6), 574–588.

    Article  Google Scholar 

  • Wild, E., Hofer, M., & Pekrun, R. (2001). Psychologie des Lerners. In A. Krapp & B. Weidenmann (Eds.), Pädagogische Psychologie - Ein Lehrbuch (pp. 207–270). Weinheim: Beltz Psychologie Verlags Union.

    Google Scholar 

  • Williams, J. B. (2007). Assertion‐reason multiple‐choice testing as a tool for deep learning: a qualitative analysis. Assessment & Evaluation in Higher Education, 31(3), 287–301.

  • Wu, W. H., Wu, Y. C. J., Chen, C. Y., Kao, H. Y., Lin, C. H., & Huang, S. H. (2012). Review of trends from mobile learning studies: a meta-analysis. Computers & Education, 59(2), 817–827.

    Article  Google Scholar 

Download references

Acknowledgements

Generous financial support by the “Wilfried-und-Ingrid-Kuhn-Stiftung” for the doctoral thesis of Katrin Hochberg is gratefully acknowledged. The current paper is based largely on this thesis.

Funding

This study was funded by the “Wilfried-und-Ingrid-Kuhn-Stiftung”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Hochberg.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Conflict of Interest

Katrin Hochberg declares that she has no conflict of interest. Jochen Kuhn declares that he has no conflict of interest. Andreas Müller declares that he has no conflict of interest.

Electronic supplementary material

Online Resource 1

(PDF 12302 kb)

Online Resource 2

(PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hochberg, K., Kuhn, J. & Müller, A. Using Smartphones as Experimental Tools—Effects on Interest, Curiosity, and Learning in Physics Education. J Sci Educ Technol 27, 385–403 (2018). https://doi.org/10.1007/s10956-018-9731-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10956-018-9731-7

Keywords

Navigation