Skip to main content
Log in

Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

I present a general framework allowing to carry out explicit calculation of the moment generating function of random matrix products \(\varPi _n=M_nM_{n-1}\ldots M_1\), where \(M_i\)’s are i.i.d. Following Tutubalin (Theor Probab Appl 10(1):15–27, 1965), the calculation of the generating function is reduced to finding the largest eigenvalue of a certain transfer operator associated with a family of representations of the group. The formalism is illustrated by considering products of random matrices from the group \(\mathrm {SL}(2,\mathbb {R})\) where explicit calculations are possible. For concreteness, I study in detail transfer matrix products for the one-dimensional Schrödinger equation where the random potential is a Lévy noise (derivative of a Lévy process). In this case, I obtain a general formula for the variance of \(\ln ||\varPi _n||\) and for the variance of \(\ln |\psi (x)|\), where \(\psi (x)\) is the wavefunction, in terms of a single integral involving the Fourier transform of the invariant density of the matrix product. Finally I discuss the continuum limit of random matrix products (matrices close to the identity). In particular, I investigate a simple case where the spectral problem providing the generalized Lyapunov exponent can be solved exactly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For a broader perspective on eigenfunction statistics, beyond 1D, cf. [45, 81].

  2. The vanishing of Lyapunov exponents can also occur in multichannel models [23, 57].

  3. The parameter k can be reintroduced by performing the substitutions \(z\rightarrow z/k\), \(\rho \rightarrow \rho /k\) and \(u\rightarrow v/k\).

  4. The case of matrices KA, i.e. when the first matrix in (3.37) is replaced by a rotation, corresponds to a real energy [90].

  5. Eq. (3.41) is proven by using Mellin transform, defined by (4.8). First we remark that \(-\frac{{\mathrm {d}}}{{\mathrm {d}}z}\big [z\varphi (z)\big ]\) is transformed into \(s\,\check{\varphi }(s)\), thus \({\mathrm {e}}^{-2w\,\frac{{\mathrm {d}}}{{\mathrm {d}}z}z} \varphi (z)\rightarrow {\mathrm {e}}^{2ws}\check{\varphi }(s)\). Second we use that the dilatation \(\lambda \,\varphi (\lambda z)\) takes the form \(\lambda ^{-s}\check{\varphi }(s)\) and choose \(\lambda ={\mathrm {e}}^{-2w}\). Qed.

  6. The parameter k is reintroduced thanks to \(z\rightarrow z/k\) and \(\rho \rightarrow \rho /k\).

  7. The fact that f(z) has support in \(\mathbb {R}_+\) can be understood as follows: the action of matrices (3.37) in the projective line can be analysed by considering the (Riccati) stochastic process z(x) corresponding to the diffusion operator \(\langle {\mathrm {e}}^{\theta \mathscr {D}_{\widetilde{K}}} \rangle _\theta \langle {\mathrm {e}}^{w\mathscr {D}_{A}} \rangle _w\). The action of the matrix \(A(w_n)\) corresponds to \(z(x_{n}^+)=z(x_{n}^-)\,{\mathrm {e}}^{2w_n}\) while the action of \(\widetilde{K}(\theta _n)\) to the evolution \(\frac{{\mathrm {d}}}{{\mathrm {d}}x}z(x)=k^2-z(x)^2\) for \(x\in ]x_{n},x_{n+1}[\), with \(\theta _n=k(x_{n+1}-x_{n})\). \(z=k\) is a fixed point of the free evolution, hence \(z(x)\in [k,\infty [\) when \(w_n>0\), and \(z(x)\in [0,k]\) when \(w_n<0\) (see § 4.3.2 of [32]). If \(w_n\)’s have random signs, the random process belongs to \(\mathbb {R}_+\), which is thus the support of the distribution f.

  8. The Riccati variable is related to the wave function solution of (1.7) by \(z(x)=\psi '(x)/\psi (x)\) [32].

  9. A similar form was obtained in chapter 9 of [64] by using the replica trick, for the specific case of the Halperin model (continuum limit of matrix products of type KN). The relation with the variance \(\gamma _2\) was however not established and the divergence of the integral in the absence of the \({{\mathrm {Re}}}[\cdots ]\) was not discussed.

  10. A more precise study of phase randomization for the 1D Anderson model was provided in Ref. [11].

  11. In Ref. [34], a general formula for the Lyapunov exponent was used:

    $$\begin{aligned} \lambda _1 = -{\overline{w}} + \int {\mathrm{d}}z\, z \left\{ \overline{\theta } + \frac{{\mathrm {d}}}{{\mathrm {d}}z} \left( \frac{D_{\theta \theta }}{2}(1+z^2) - 2D_{\theta w} \, z - D_{\theta u} \right) \right\} f(z) \end{aligned}$$
    (7.14)

    which is the limit of (2.40) for small parameters. In Eq. 2.46 of Ref. [34], the integral was (incorrectly) splitted, which is not always possible. A simple example where it cannot be splitted is the case with disorder on angles, \(D_{\theta \theta }\ne 0\) with finite mean values \({\overline{\theta }}\), \({\overline{w}}\) and \({\overline{u}}\): the invariant density f is easy to find and one can see that when splitted, the integrals do not converge, even in principal part, while (7.13) is convergent.

  12. Equivalently we can obtain the variance from (5.24) by taking the continuum limit, \(\gamma _2=-\lim _{\rho \rightarrow \infty }\rho \lambda _2\) (with \(\left\langle v_n \right\rangle =0\) and \(\rho \left\langle v_n^2 \right\rangle =\sigma \) fixed, cf. Appendix E).

  13. Note that the exponent 4/3 is compatible with the numerics of Ref. [112].

  14. Note that for \({\overline{w}}>0\), the invariant density is trivial as the inverse of the Riccati variable is distributed according to a delta function. For \({\overline{w}}<0\), the invariant density is a non trivial distribution, as we have seen above in the continuum limit, Eq. (7.33).

  15. A group of \(2m\times 2m\) real matrices is symplectic if matrices satisfy \( M^\mathrm {T}\,J\,M = J \) where \(J={\mathrm{i}}\sigma _2\otimes \varvec{1}_m\). It follows that the 2m eigenvalues come by pairs \(\mathrm {Spec}(M)=\{\lambda _1,\ldots ,\lambda _m,\lambda _1^{-1},\ldots ,\lambda _m^{-1}\}\).

  16. For \(2m\times 2m\) symplectic real matrices, Vanneste has obtained [108] \(\widetilde{\varLambda }(q)=\widetilde{\varLambda }(-2m-q)\).

  17. Note that Bargmann has considered irreducible unitary representations, while the representaions of interest here are non-unitary.

References

  1. Abrahams, E., Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42(10), 673 (1979)

    ADS  Google Scholar 

  2. Abrikosov, A.A.: The paradox with the static conductivity of a one-dimensional metal. Solid State Commun. 37(12), 997–1000 (1981)

    ADS  Google Scholar 

  3. Akemann, G., Ipsen, J.R.: Recent exact and asymptotic results for products of independent random matrices. Acta Phys. Pol. B 46(9), 1747–1784 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Akemann, G., Burda, Z., Kieburg, M.: Universal distribution of Lyapunov exponents for products of Ginibre matrices. J. Phys. A 47, 395202 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Altshuler, B.L., Prigodin, V.N.: Distribution of local density of states and NMR line shape in a one-dimensional disordered conductor. Sov. Phys. JETP 68(1), 198–209 (1989)

    Google Scholar 

  6. Anderson, P.W., Thouless, D.J., Abrahams, E., Fisher, D.S.: New method for a scaling theory of localization. Phys. Rev. B 22(8), 3519–3526 (1980)

    ADS  MathSciNet  Google Scholar 

  7. Antsygina, T.N., Pastur, L.A., Slyusarev, V.A.: Localization of states and kinetic properties of one-dimensional disordered systems. Sov. J. Low Temp. Phys. 7(1), 1–21 (1981)

    Google Scholar 

  8. Applebaum, D.: Lévy Processes and Stochastic Calculus. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  9. Baldi, P., Tarabusi, C., Figà-Talamanca, A., Yor, M.: Non-symmetric hitting distributions on the hyperbolic half-plane and subordinated perpetuities. Rev. Mater. Iberoam. 17(3), 587–605 (2001)

    MathSciNet  MATH  Google Scholar 

  10. Bargmann, V.: Irreducible Unitary Representations of the Lorentz Group. Ann. Math. Second Ser. 48(3), 568–640 (1947)

    MathSciNet  MATH  Google Scholar 

  11. Barnes, C., Luck, J.-M.: The distribution of the reflection phase of disordered conductors. J. Phys. A 23, 1717 (1990)

    ADS  Google Scholar 

  12. Beenakker, C.W.J.: Random-matrix theory of quantum transport. Rev. Mod. Phys. 69(3), 731–808 (1997)

    ADS  MathSciNet  Google Scholar 

  13. Bellman, R.: Limit theorems for non-commutative operations. I. Duke Math. J. 21(3), 491–500 (1954)

    MathSciNet  MATH  Google Scholar 

  14. Benoist, Y., Quint, J.-F.: Random Walks on Reductive Groups. A Series of Modern Surveys in Mathematics, vol. 62. Springer, New York (2016)

    MATH  Google Scholar 

  15. Benzi, R., Paladin, G., Parisi, G., Vulpiani, A.: Characterisation of intermittency in chaotic systems. J. Phys. A 18(12), 2157–2166 (1985)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Bhattacharya, R.N.: On the functional central limit theorem and the law of the iterated logarithm for Markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 60(2), 185–201 (1982)

    MathSciNet  MATH  Google Scholar 

  17. Bienaimé, T., Texier, C.: Localization for one-dimensional random potentials with large fluctuations. J. Phys. A 41, 475001 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Boosé, D., Luck, J.-M.: Statistics of quantum transmission in one dimension with broad disorder. J. Phys. A 40, 14045–14067 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  19. Bouchaud, J.-P., Georges, A., Hansel, D., Le Doussal, P., Maillard, J.-M.: Rigorous bounds and the replica method for products of random matrices. J. Phys. A 19, L1145–L1152 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  20. Bouchaud, J.-P., Georges, A., Le Doussal, P.: Fluctuations of the Lyapunov exponent and intermittency in dynamical and disordered systems: the example of 1D localization. In: Proceedings of the Meeting on Dynamical Systems, Rome, Italy (1986). Preprint LPTENS 86/34

  21. Bouchaud, J.-P., Comtet, A., Georges, A., Le Doussal, P.: Classical diffusion of a particle in a one-dimensional random force field. Ann. Phys. (N.Y.) 201, 285–341 (1990)

    ADS  MathSciNet  Google Scholar 

  22. Bougerol, P., Lacroix, J.: Products of Random Matrices with Applications to Schrödinger Operators. Birkhaüser, Basel (1985)

    MATH  Google Scholar 

  23. Brouwer, P.W., Mudry, C., Simons, B.D., Altland, A.: Delocalization in coupled one-dimensional chains. Phys. Rev. Lett. 81, 862–865 (1998)

    ADS  Google Scholar 

  24. Buraczewski, D., Mentemeier, S.: Precise large deviation results for products of random matrices. Ann. Inst. H. Poincaré Probab. Stat. 52(3), 1474–1513 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Bychkov, YuA, Dykhne, A.M.: Impurity band in a one-dimensional model. Sov. Phys. JETP 24(6), 1290 (1967)

    ADS  Google Scholar 

  26. Charbonneau, P., Li, Y., Pfister, H.D., Yaida, S.: Cycle-expansion method for the Lyapunov exponent, susceptibility, and higher moments. Phys. Rev. E 96, 032129 (2017)

    ADS  MathSciNet  Google Scholar 

  27. Cohen, A., Roth, Y., Shapiro, B.: Universal distributions and scaling in disordered systems. Phys. Rev. B 38(17), 12125–12132 (1988)

    ADS  Google Scholar 

  28. Comets, F., Meyre, T.: Calcul Stochastique et modèles de Diffusions. Dunod, Paris (2015)

    Google Scholar 

  29. Comets, F., Giacomin, G., Greenblatt, R.L.: Continuum limit of random matrix products in statistical mechanics of disordered systems. Commun. Math. Phys. 369, 171–219 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Comtet, A., Texier, C.: One-dimensional disordered supersymmetric quantum mechanics: a brief survey. In: Aratyn, H., Imbo, T.D., Keung, W.-Y., Sukhatme, U. (eds.) Supersymmetry and Integrable Models. Lecture Notes in Physics, vol. 502, pp. 313–328. Springer, New York (1998)

    Google Scholar 

  31. Comtet, A., Desbois, J., Texier, C.: Functionals of the Brownian motion, localization and metric graphs. J. Phys. A 38, R341–R383 (2005)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Comtet, A., Texier, C., Tourigny, Y.: Products of random matrices and generalised quantum point scatterers. J. Stat. Phys. 140(3), 427–466 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  33. Comtet, A., Texier, C., Tourigny, Y.: Supersymmetric quantum mechanics with Lévy disorder in one dimension. J. Stat. Phys. 145(5), 1291–1323 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  34. Comtet, A., Luck, J.-M., Texier, C., Tourigny, Y.: The Lyapunov exponent of products of random \(2\times 2\) matrices close to the identity. J. Stat. Phys. 150(1), 13–65 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Comtet, A., Texier, C., Tourigny, Y.: Lyapunov exponents, one-dimensional Anderson localisation and products of random matrices. J. Phys. A 46, 254003 (2013). Special issue “Lyapunov analysis: from dynamical systems theory to applications”

  36. Comtet, A., Texier, C., Tourigny, Y.: Representation theory and products of random matrices in \({\rm SL}(2,{\mathbb{R}})\) (2019). arXiv:1911.00117

  37. Crisanti, A., Paladin, G., Vulpiani, A.: Products of Random Matrices in Statistical Physics. Springer Series in Solid-State Sciences, vol. 104. Springer, New York (1993)

    MATH  Google Scholar 

  38. Derrida, B., Hilhorst, H.J.: Singular behaviour of certain infinite products of random \(2\times 2\) matrices. J. Phys. A 16, 2641–2654 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Derrida, B., Vannimenus, J., Pomeau, Y.: Simple frustrated systems: Chains, strips and squares. J. Phys. C 11, 4749–4765 (1978)

    ADS  Google Scholar 

  40. Deych, L.I., Lisyansky, A.A., Altshuler, B.L.: Single parameter scaling in one-dimensional localization revisited. Phys. Rev. Lett. 84(12), 2678 (2000)

    ADS  Google Scholar 

  41. Deych, L .I., Lisyansky, A .A., Altshuler, B .L.: Single parameter scaling in 1-D Anderson localization. Exact analytical solution. Phys. Rev. B 64, 224202 (2001)

    ADS  Google Scholar 

  42. Deych, L.I., Erementchouk, M.V., Lisyansky, A.A.: Scaling properties of the one-dimensional Anderson model with correlated diagonal disorder. Phys. Rev. B 67, 024205 (2003)

    ADS  Google Scholar 

  43. Deych, L.I., Erementchouk, M.V., Lisyansky, A.A., Altshuler, B.L.: Scaling and the center-of-band anomaly in a one-dimensional Anderson model with diagonal disorder. Phys. Rev. Lett. 91, 096601 (2003)

    ADS  Google Scholar 

  44. Dorokhov, O.N.: Electron localization in a multichannel conductor. Sov. Phys. JETP 58(3), 606–615 (1983)

    Google Scholar 

  45. Evers, F., Mirlin, A.D.: Anderson transitions. Rev. Mod. Phys. 80(4), 1355–1417 (2008)

    ADS  Google Scholar 

  46. Figge, M.T., Mostovoy, M.V., Knoester, J.: Critical temperature and density of spin flips in the anisotropic random-field Ising model. Phys. Rev. B 58, 2626–2634 (1998)

    ADS  Google Scholar 

  47. Forrester, P.J.: Asymptotics of finite system Lyapunov exponents for some random matrix ensembles. J. Phys. A 48, 215205 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  48. Frisch, H.L., Lloyd, S.P.: Electron levels in a one-dimensional random lattice. Phys. Rev. 120(4), 1175–1189 (1960)

    ADS  MATH  Google Scholar 

  49. Fujisaka, H.: Statistical dynamics generated by fluctuations of local Lyapunov exponents. Prog. Theor. Phys. 70(5), 1264–1275 (1983)

    ADS  MathSciNet  MATH  Google Scholar 

  50. Furstenberg, H.: Noncommuting random products. Trans. Am. Math. Soc. 108, 377–428 (1963)

    MathSciNet  MATH  Google Scholar 

  51. Furstenberg, H., Kesten, H.: Products of random matrices. Ann. Math. Stat. 31(2), 457–469 (1960)

    MathSciNet  MATH  Google Scholar 

  52. Fyodorov, Y.V., Le Doussal, P., Rosso, A., Texier, C.: Exponential number of equilibria and depinning threshold for a directed polymer in a random potential. Ann. Phys. 397, 1–64 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Gel’fand, I.M., Graev, M.I., Vilenkin, N.Ya.: Generalized functions. Integral geometry and representation theory, vol. 5. Academic Press, New York (1966)

    MATH  Google Scholar 

  54. Genovese, G., Giacomin, G., Greenblatt, R.L.: Singular behavior of the leading Lyapunov exponent of a product of random \(2\times 2\) matrices. Commun. Math. Phys. 351(3), 923–958 (2017)

    ADS  MATH  Google Scholar 

  55. Gertsenshtein, M.E., Vasil’ev, V.B.: Waveguides with random inhomogeneities and Brownian motion in the Lobachevsky plane. Theory Probab. Appl. 4(4), 391–398 (1959)

    Google Scholar 

  56. Giardina, C., Kurchan, J., Lecomte, V., Tailleur, J.: Simulating rare events in dynamical processes. J. Stat. Phys. 145(4), 787–811 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  57. Grabsch, A., Texier, C.: Topological phase transitions in the 1D multichannel Dirac equation with random mass and a random matrix model. Europhys. Lett. 116, 17004 (2016)

    ADS  Google Scholar 

  58. Grabsch, A., Texier, C., Tourigny, Y.: One-dimensional disordered quantum mechanics and Sinai diffusion with random absorbers. J. Stat. Phys. 155(2), 237–276 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  59. Gradshteyn, I .S., Ryzhik, I .M.: Table of Integrals, Series and Products, 5th edn. Academic Press, New York (1994)

    MATH  Google Scholar 

  60. Guivarc’h, Y., Raugi, A.: Frontière de Furstenberg, propriétés de contraction et théorèmes de convergence. Z. Wahrscheinlichkeitstheorie verw. Gebiete 69(2), 187–242 (1985)

    MathSciNet  MATH  Google Scholar 

  61. Hagendorf, C., Texier, C.: Breaking supersymmetry in a one-dimensional random Hamiltonian. J. Phys. A 41, 405302 (2008)

    ADS  MathSciNet  MATH  Google Scholar 

  62. Halperin, B.I.: Green’s functions for a particle in a one-dimensional random potential. Phys. Rev. 139(1A), A104–A117 (1965)

    ADS  MathSciNet  Google Scholar 

  63. Ishii, K.: Localization of eigenstates and transport phenomena in the one dimensional disordered system. Prog. Theor. Phys. (Suppl.) 53, 77–138 (1973)

    ADS  Google Scholar 

  64. Itzykson, C., Drouffe, J.-M.: Théorie statistique des champs, Interéditions–Cnrs, Paris, Tomes 1 et 2 (1989)

  65. Jentschura, U.D., Zinn-Justin, J.: Instantons in quantum mechanics and resurgent expansions. Phys. Lett. B 596(1), 138–144 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  66. Kotani, S.: On asymptotic behaviour of the spectra of a one-dimensional Hamiltonian with a certain random coefficient. Publ. RIMS Kyoto Univ. 12, 447–492 (1976)

    MathSciNet  MATH  Google Scholar 

  67. Kozçaz, C., Sulejmanpasic, T., Tanizaki, Y., Ünsal, M.: Cheshire cat resurgence, self-resurgence and quasi-exact solvable systems. Commun. Math. Phys. 364(3), 835–878 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  68. Le Page, E.: Théorèmes limites pour les produits de matrices aléatoires. Lecture notes in Mathametics n\(^{{\rm o}}\)928, pp. 258–303. Springer, New York (1983)

  69. Lifshits, I.M., Gredeskul, S.A., Pastur, L.A.: Introduction to the Theory of Disordered Systems. Wiley, New York (1988)

    Google Scholar 

  70. Luck, J.-M.: Systèmes désordonnés unidimensionnels, CEA, collection Aléa Saclay, Saclay (1992)

  71. Luck, J.M.: Critical behavior of the aperiodic quantum Ising chain in a transverse magnetic field. J. Stat. Phys. 72(3), 417–458 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  72. Luck, J.-M.: Non-monotonic disorder-induced enhanced tunneling. J. Phys. A 37, 259–271 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  73. Ludwig, A.W.W., Schulz-Baldes, H., Stolz, M.: Lyapunov spectra for all ten symmetry classes of quasi-one-dimensional disordered systems of non-interacting fermions. J. Stat. Phys. 152(2), 275–304 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  74. Majumdar, S.N.: Brownian functionals in physics and computer science. Curr. Sci. 89, 2076–2092 (2005)

    MathSciNet  Google Scholar 

  75. Majumdar, S.N., Bray, A.J.: Large-deviation functions for nonlinear functionals of a Gaussian stationary Markov process. Phys. Rev. E 65, 051112 (2002)

    ADS  MathSciNet  Google Scholar 

  76. Mallick, K., Marcq, P.: Anomalous diffusion in nonlinear oscillators with multiplicative noise. Phys. Rev. E 66, 041113 (2002)

    ADS  Google Scholar 

  77. McCoy, B .M., Wu, T .T.: Theory of a two-dimensional ising model with random impurities. I. Thermodynamics. Phys. Rev. 176, 631–643 (1968)

    ADS  MathSciNet  Google Scholar 

  78. Mello, P.A.: Central limit theorems on groups. J. Math. Phys. 27, 2876–2891 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  79. Mello, P .A., Pereyra, P., Kumar, N.: Macroscopic approach to multichannel disordered conductors. Ann. Phys. (N.Y.) 181, 290–317 (1988)

    ADS  Google Scholar 

  80. Mel’nikov, V.I.: Distribution of resistivity probabilities of a finite, disordered system. JETP Lett. 32(3), 225–228 (1980)

    ADS  Google Scholar 

  81. Mirlin, A.D.: Statistics of energy levels and eigenfunctions in disordered systems. Phys. Rep. 326(5–6), 259–382 (2000)

    ADS  MathSciNet  Google Scholar 

  82. Newman, C.M.: The distribution of Lyapunov exponents: exact results for random matrices. Commun. Math. Phys. 103, 121–126 (1986)

    ADS  MathSciNet  MATH  Google Scholar 

  83. Nieuwenhuizen, T.M.: Exact electronic spectra and inverse localization lengths in one-dimensional random systems. Physica A 120, 468–514 (1983)

    ADS  MathSciNet  Google Scholar 

  84. O’Connor, A.J.: A central limit theorem for the disordered harmonic chain. Commun. Math. Phys. 45(1), 63–77 (1975)

    ADS  MathSciNet  MATH  Google Scholar 

  85. Paladin, G., Vulpiani, A.: Anomalous scaling and generalized Lyapunov exponents of the one-dimensional Anderson model. Phys. Rev. B 35, 2015–2020 (1987)

    ADS  Google Scholar 

  86. Paladin, G., Vulpiani, A.: Anomalous scaling in multifractal objects. Phys. Rep. 156(4), 147–225 (1987)

    ADS  MathSciNet  Google Scholar 

  87. Pendry, J.B.: 1D localisation and the symmetric group. J. Phys. C 15(23), 4821–4834 (1982)

    ADS  Google Scholar 

  88. Pendry, J.B.: Symmetry and transport of waves in one-dimensional disordered systems. Adv. Phys. 43(4), 461–542 (1994)

    ADS  MathSciNet  Google Scholar 

  89. Pollicott, M.: Maximal Lyapunov exponents for random matrix products. Inven. Math. 181(1), 209–226 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  90. Ramola, K., Texier, C.: Fluctuations of random matrix products and 1D Dirac equation with random mass. J. Stat. Phys. 157(3), 497–514 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  91. Schmidt, H.: Disordered one-dimensional crystals. Phys. Rev. 105(2), 425–441 (1957)

    ADS  MathSciNet  MATH  Google Scholar 

  92. Schomerus, H., Titov, M.: Statistics of finite-time Lyapunov exponents in a random time-dependent potential. Phys. Rev. E 66, 066207 (2002)

    ADS  MathSciNet  Google Scholar 

  93. Schomerus, H., Titov, M.: Band-center anomaly of the conductance distribution in one-dimensional Anderson localization. Phys. Rev. B 67, 100201 (2003)

    ADS  Google Scholar 

  94. Schrader, R., Schulz-Baldes, H., Sedrakyan, A.: Perturbative test of single parameter scaling for 1D random media. Ann. Henri Poincaré 5(6), 1159–1180 (2004)

    ADS  MathSciNet  MATH  Google Scholar 

  95. Schuss, Z.: Theory and Applications of Stochastic Processes. Springer, New York (2010)

    MATH  Google Scholar 

  96. Steiner, M., Chen, Y., Fabrizio, M., Gogolin, A.O.: Statistical properties of localization-delocalization transition in one dimension. Phys. Rev. B 59(23), 14848–14851 (1999)

    ADS  Google Scholar 

  97. Stone, A.D., Allan, D.C., Joannopoulos, J.D.: Phase randomness in the one-dimensional Anderson model. Phys. Rev. B 27, 836–843 (1983)

    ADS  Google Scholar 

  98. Sturman, R., Thiffeault, J.-L.: Lyapunov exponents for the random product of two shears. J. Nonlinear Sci. 29(2), 593–620 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  99. Texier, C.: Quelques aspects du transport quantique dans les systèmes désordonnés de basse dimension, Ph.D. thesis, Université Paris 6 (1999). http://lptms.u-psud.fr/christophe_texier/ or http://tel.archives-ouvertes.fr/tel-01088853

  100. Texier, C.: Individual energy level distributions for one-dimensional diagonal and off-diagonal disorder. J. Phys. A 33, 6095–6128 (2000)

    ADS  MathSciNet  MATH  Google Scholar 

  101. Texier, C.: Generalized Lyapunov exponent of random matrices and universality classes for SPS in 1D Anderson localisation. Europhys. Lett. 131, 17002 (2020)

    Google Scholar 

  102. Texier, C., Comtet, A.: Universality of the Wigner time delay distribution for one-dimensional random potentials. Phys. Rev. Lett. 82(21), 4220–4223 (1999)

    ADS  Google Scholar 

  103. Texier, C., Hagendorf, C.: One-dimensional classical diffusion in a random force field with weakly concentrated absorbers. Europhys. Lett. 86, 37011 (2009)

    ADS  Google Scholar 

  104. Texier, C., Hagendorf, C.: The effect of boundaries on the spectrum of a one-dimensional random mass Dirac Hamiltonian. J. Phys. A 43, 025002 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  105. Titov, M., Schomerus, H.: Anomalous wave function statistics on a one-dimensional lattice with power-law disorder. Phys. Rev. Lett. 91, 176601 (2003)

    ADS  Google Scholar 

  106. Tutubalin, V.N.: On limit theorems for the product of random matrices. Theor. Probab. Appl. 10(1), 15–27 (1965)

    MathSciNet  MATH  Google Scholar 

  107. Valkó, B., Virág, B.: Random Schrödinger operators on long boxes, noise explosion and the GOE. Trans. Am. Math. Soc. 366(7), 3709–3728 (2014)

    MATH  Google Scholar 

  108. Vanneste, J.: Estimating generalized Lyapunov exponents for products of random matrices. Phys. Rev. E 81, 036701 (2010)

    ADS  Google Scholar 

  109. Vilenkin, N.J.: Special functions and the theory of group representations, vol. 22. American Mathematical Society, Providence, RI (1978)

    Google Scholar 

  110. Vishik, M.I., Lyusternik, L.A.: The solution of some perturbation problems for matrices and selfadjoint or non-selfadjoint differential equations I. Russ. Math. Surv. 15, 1–73 (1960)

    MATH  Google Scholar 

  111. Weigt, M., Monasson, R.: Replica structure of one-dimensional disordered Ising models. Europhys. Lett. 36(3), 209–214 (1996)

    ADS  Google Scholar 

  112. Zillmer, R., Pikovsky, A.: Multiscaling of noise-induced parametric instability. Phys. Rev. E 67, 061117 (2003)

    ADS  Google Scholar 

  113. Zillmer, R., Pikovsky, A.: Continuous approach for the random-field Ising chain. Phys. Rev. E 72, 056108 (2005)

    ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This paper has benefited from a long term collaboration with Alain Comtet and Yves Tourigny, to whom I express my gratitude. In particular, the introduction of the representation with multipliers and the role of Jacobians owes them a lot. The connection with representation theory is discussed in another paper [36]. I am grateful to Jean-Marc Luck for several stimulating discussions. I thank Olivier Giraud for a helpful remark and Maxime Allemand. I thank Alain Comtet, Satya Majumdar and Yves Tourigny for remarks on the manuscript. I am grateful to Jean-Luc Thiffeault for pointing to my attention Ref. [98]. Finally I am indebted to the two heroic anonymous referees for having carefully examined this long manuscript and for their helpful remarks. This work has benefited from the financial support “Investissements d’Avenir du LabEx PALM” (ANR-10-LABX-0039-PALM), project ProMAFluM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Texier.

Additional information

Communicated by Giulio Biroli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

A Representation with Multipliers: Another Convention

In this appendix, the connection is made with the convention of Ref. [36] for the construction of the representation with multipliers. This second convention, used in the mathematical literature, is probably more appropriate for generalization to groups of matrices of larger dimensions.

The starting point is to introduce the adjoint of the transfer operator, with same definition as in the paper,

$$\begin{aligned} \big [ \mathscr {T}_M^\dagger (q) \psi \big ](z) {\mathop {=}\limits ^{{\mathrm{def}}}}J^{-q/2}(M,z) \, \psi \left( \mathcal {M}(z) \right) . \end{aligned}$$
(A.1)

We now define the scalar product as

$$\begin{aligned} \left( \, \psi \,|\, \tilde{f} \, \right) {\mathop {=}\limits ^{{\mathrm{def}}}}\int {\mathrm{d}}z \,\rho (z)\, \psi (z)^*\, \tilde{f}(z) . \end{aligned}$$
(A.2)

The relation with the scalar product (2.61) can be simply established by writing

$$\begin{aligned} \left( \, \psi \,|\, \tilde{f} \, \right) = \langle \, \psi \,|\, f \, \rangle \qquad \text{ with } f(z)= \rho (z)\, \tilde{f}(z). \end{aligned}$$
(A.3)

With this new scalar product in hand, we can obtain the new transfer operator as follows

$$\begin{aligned}&\left( \, \mathscr {T}_M^\dagger (q)\psi \,|\, \tilde{f} \, \right) = \int {\mathrm{d}}y\, \rho (y) \, J^{-q/2}(M,y)\, \psi \left( \mathcal {M}(y) \right) ^*\, \tilde{f}(y) \nonumber \\&\qquad = \int {\mathrm{d}}z\, \rho \left( \mathcal {M}^{-1}(z)\right) \, \frac{{\mathrm {d}}\mathcal {M}^{-1}(z)}{{\mathrm {d}}z}\, J^{-q/2}(M,\mathcal {M}^{-1}(z))\, \psi (z)^*\, \tilde{f}\left( \mathcal {M}^{-1}(z) \right) \nonumber \\&\qquad = \left( \, \psi \,|\, \widetilde{\mathscr {T}}_M(q)\tilde{f} \, \right) \end{aligned}$$
(A.4)

with

$$\begin{aligned} \left[ \widetilde{\mathscr {T}}_M(q) f \right] (z) = J^{1+q/2}(M^{-1},z) \, f\left( \mathcal {M}^{-1}(z) \right) . \end{aligned}$$
(A.5)

From (A.3), we see that the two representations (2.41,A.5) are related by

$$\begin{aligned} \frac{1}{\rho (z)}\, \mathscr {T}_M(q)\, \rho (z)= \widetilde{\mathscr {T}}_M(q) . \end{aligned}$$
(A.6)

Contrary to \(\mathscr {T}_M={\mathscr {T}}_M(q=0)\), which preserves the norm \(\int {\mathrm{d}}z\,f(z)\), the operator \(\widetilde{\mathscr {T}}_M(q=0)\) conserves \(\int {\mathrm{d}}z\,\rho (z)\,\tilde{f}(z)\): \( \int {\mathrm{d}}z\, \rho (z)\,\big [ \widetilde{\mathscr {T}}_M(0) \tilde{f} \big ](z) = \int {\mathrm{d}}z\, \rho (z)\,\tilde{f}(z) . \) This is one of the reasons why we have preferred the representation (2.41) in the paper.

Finally, note that the transfer operators (A.5) are related to infinitesimal generators of the form

$$\begin{aligned} \widetilde{\mathscr {D}}_i(q) = \frac{1}{\rho (z)}\, \mathscr {D}_i(q)\, \rho (z) = g_i(z)\,\frac{{\mathrm {d}}}{{\mathrm {d}}z} + (q+2)\, h_i(z) \qquad \text{ for } i\in \{ K, \, A, \, N \} . \end{aligned}$$
(A.7)

It is also easy to check that they realise the Lie algebra of \(\mathrm {SL}(2,\mathbb {R})\) and that they are adjoint to the infinitesimal generators (2.69), with respect with the scalar product (A.2).

B Irreducible Representations of \(\mathrm {SL}(2,\mathbb {R})\)

We recall basic properties of the representation theory of real unimodular matrices, taken from the monograph [53]. For \(M\in \mathrm {SL}(2,\mathbb {R})\), let us start with the group action in the space \(\mathscr {F}(\mathbb {R}^2)\) of infinitely differentiable functions defined in the plane

$$\begin{aligned} (T_M F)(\varvec{x}) {\mathop {=}\limits ^{{\mathrm{def}}}}F(M^{-1}\cdot \varvec{x}) \end{aligned}$$
(B.1)

Classification of the irreducible representations of the group requires to identify the smallest proper invariant subspaces of functions. For this purpose, homogeneous functions play an important role. A function satisfying the property

$$\begin{aligned} F(\lambda \,\varvec{x}) = \left( {{\mathrm {sign}}}(\lambda ) \right) ^{1-\epsilon } \,|\lambda |^{-\eta }\,F(\varvec{x}) \qquad \forall \, \lambda \in \mathbb {R} \end{aligned}$$
(B.2)

is called a homogeneous function of degree \(\eta \in \mathbb {C}\), where \(\epsilon \in \{+1,\,-1\}\) defines even and odd sectors. We denote by \(\mathscr {E}_{\eta }^+\) the space of homogeneous functions of degree \(\eta \) with even parity, and \(\mathscr {E}_{\eta }^-\) with odd parity. Clearly, the property (B.2) is preserved by the transformation (B.1), hence we have identified subspaces of \(\mathscr {F}(\mathbb {R}^2)\) invariant under the action of the group. The space \(\mathscr {E}_{\eta }^\pm \) for noninteger \(\eta \) is known to generate an irreducible representation of \(\mathrm {SL}(2,\mathbb {R})\) [53].

A key observation is that each homogeneous function of given parity is uniquely determined by its value on the projective line: for any \(F\in \mathscr {E}_{\eta }^+\), we have \(F(x,y)=|y|^{-\eta }F(x/y,1)=|x|^{-\eta }F(1,y/x)\), hence each homogeneous function of degree \(\eta \) can be represented by an infinitely differentiable function defined on the projective line

$$\begin{aligned} f(z) = F(z,1) = |z|^{-\eta }\, F(1,1/z) . \end{aligned}$$
(B.3)

This shows that, on the projective line, the elements of \(\mathscr {E}_{\eta }^+\) are represented by functions such that the two limits

$$\begin{aligned} \lim _{z\rightarrow -\infty } (-z)^{\eta }\,f(z) \,\,\,\text{ and }\,\,\, \lim _{z\rightarrow +\infty } z^{\eta }\,f(z) \,\,\,\text{ exist } \text{ and } \text{ are } \text{ equal. } \end{aligned}$$
(B.4)

In order to apply these considerations to our case we must relate the degree of the representation to the parameter q. Given a matrix (2.1), we consider the transformation \(\tilde{f}=\mathscr {T}_M(q)f\) defined by (2.41). It is straighforward to get the asymptotic behaviour

$$\begin{aligned} \tilde{f}(z) \underset{z\rightarrow \pm \infty }{\simeq } {\left\{ \begin{array}{ll} \displaystyle \left( \frac{\sqrt{\rho (-d/c)}}{|c|}\right) ^q\frac{f(-d/c)}{c^2}\,\frac{1}{z^2|z\sqrt{\rho (z)}|^q} &{} \text{ for } c\ne 0 \\ \displaystyle |a|^{-2-q}\left( \frac{\rho (z/a^2)}{\rho (z)}\right) ^{q/2}\, f(z/a^2) &{} \text{ for } c=0 \end{array}\right. } \end{aligned}$$
(B.5)

In the paper, we have considered Jacobians involving symmetric densities \(\rho (z)=\rho (-z)\) with power law tail \(\rho (z)\sim |z|^{-2\omega }\) where

$$\begin{aligned} {\left\{ \begin{array}{ll} \omega =0 &{} \text{ for } \rho _N \\ \omega =1/2 &{} \text{ for } \rho _A \\ \omega =1 &{} \text{ for } \rho _K \end{array}\right. } \end{aligned}$$
(B.6)

It is now clear from (B.5) that the operators \(\mathscr {T}_M(q)\) preserve the property (B.4), hence these operators form an irreducible representation of the unimodular group of degree

$$\begin{aligned} \eta =2+(1-\omega )\,q . \end{aligned}$$
(B.7)

For example, for the choice of Jacobian \(J=J_N\), we have simply \(\eta =2+q\) (Sect. 3.5). For \(J=J_A\), we have \(\eta =2+q/2\) (Sect. 3.6).

A remark:

  • the case \(c=0\) corresponds to the subgroup of matrices AN. As it is clear from (B.5), the exponent \(\eta \) cannot be related to q in this case.

1.1 B.1 Eigenvectors of the Casimir Operator and \(\mathscr {D}_K(q)\)

Irreducible representations of \(\mathrm {SL}(2,\mathbb {R})\) can also be analysed by the algebraic method, as it well known for \(\mathrm {SU}(2)\). For this purpose, we find more convenient to consider the decomposition of the group in terms of matrices of the subgroups \(\mathrm {K}\), \(\widetilde{\mathrm {K}}\) and \(\mathrm {A}\), i.e. as \(M=K(\theta )\widetilde{K}(\varphi )A(w)\), according to the notations of Sect. 2. With this choice, the three infinitesimal generators obey the algebra

$$\begin{aligned} \left[ \varGamma _K\,\,,\varGamma _{\widetilde{K}}\right] = 2\varGamma _A \,, \,\,\, \left[ \varGamma _K\,\,,\varGamma _A\right] = -2\varGamma _{\widetilde{K}} \,, \,\,\, \left[ \varGamma _{\widetilde{K}}\,\,,\varGamma _A\right] = -2\varGamma _K \end{aligned}$$
(B.8)

which is the usual form for the Lie algebra of \(\mathrm {SO}(2,1)\), the Lorentz group in \(2+1\) dimensions, studied by Bargmann [10] (this is also the Lie algebra for \(\mathrm {SU}(1,1)\) as expected, cf. [32]).

The connection to the Lorentz group makes easy to identify the Casimir operator as \(-\varGamma _K^2+\varGamma _{\widetilde{K}}^2+\varGamma _A^2=3\,\mathbf {1}_2\), and, for the representation of interest in the paper:

$$\begin{aligned} {\mathscr {C}}= -\mathscr {D}_{K}(q)^2 + \mathscr {D}_{\widetilde{K}}(q)^2 + \mathscr {D}_{A}(q)^2 = q\,(q+2) \,, \end{aligned}$$
(B.9)

where we have used the expressions (2.46) derived in Sect. 2.5.1. This makes clear that irreducible representations are classified by the index q (this is similar to the Bargmann index).Footnote 17 This explains the origin of the symmetry \(q\leftrightarrow -q-2\) discussed in Sect. 8.

Irreducible representations can be further characterised by diagonalization of one of the generator. We consider the operator \(\mathscr {D}_K(q)=\frac{{\mathrm {d}}}{{\mathrm {d}}z}(1+z^2)+q\,z\), acting on functions \(\phi (z)\) defined on the projective line. We have chosen here the measure \(\rho =\rho _N\).

In a first step, it is more clear to map the projective line on the half circle, \(z={{\mathrm {cotan}}}\theta \). Correspondingly, we introduce the transformed operator

$$\begin{aligned} \mathscr {B}_K(q) = \frac{{\mathrm {d}}z}{{\mathrm {d}}\theta } \, \mathscr {D}_K(q) \, \frac{{\mathrm {d}}\theta }{{\mathrm {d}}z} = -\frac{{\mathrm {d}}}{{\mathrm {d}}\theta } + q\, {{\mathrm {cotan}}}\theta \end{aligned}$$
(B.10)

acting on periodic functions \(\psi (\theta )=\psi (\theta +\pi )\) (the projective space is the space of directions, hence the period \(\pi \)). Here, \(\phi (z)\) and \(\psi (\theta )\) play the same role as densities, related by \(\phi (z)\,{\mathrm{d}}z=\psi (\theta )\,{\mathrm{d}}\theta \). It is now straightforward to get the eigenvector of \(\mathscr {B}_K(q)\):

$$\begin{aligned} \psi _n^\mathrm {R}(\theta ) = \frac{1}{\sqrt{\pi }}\,{\mathrm {e}}^{2{\mathrm{i}}n\theta }\,(\sin \theta )^q \qquad \text{ for } \text{ eigenvalue } \qquad \lambda _n=-2{\mathrm{i}}n \,, \,\,\,\text{ with } n\in \mathbb {Z} . \end{aligned}$$
(B.11)

Similarly, it is instructive to derive the eigenvector of the adjoint operator \(\mathscr {B}^\dagger _K(q) =\frac{{\mathrm {d}}}{{\mathrm {d}}\theta } + q^*\, {{\mathrm {cotan}}}\theta \) (we consider \(q\in \mathbb {C}\) in this paragraph):

$$\begin{aligned} \psi _n^\mathrm {L}(\theta ) = \frac{1}{\sqrt{\pi }}\,{\mathrm {e}}^{2{\mathrm{i}}n\theta }\,(\sin \theta )^{-q^*} . \end{aligned}$$
(B.12)

The orthonormalisation reads \(\int _0^\pi {\mathrm{d}}\theta \,\psi _n^\mathrm {L}(\theta )^*\psi _m^\mathrm {R}(\theta )=\delta _{n,m}\).

We now come back on the projective line. The right and left eigenvectors of \(\mathscr {D}_K(q)\) are \(\phi _n^\mathrm {R}(z)=\psi _n^\mathrm {R}(\theta )\frac{{\mathrm {d}}\theta }{{\mathrm {d}}z}\) and \(\phi _n^\mathrm {L}(z)=\psi _n^\mathrm {L}(\theta )\):

$$\begin{aligned} \phi _n^\mathrm {R}(z) = \frac{1}{\sqrt{\pi }}\,\left( \frac{z+{\mathrm{i}}}{z-{\mathrm{i}}}\right) ^n\,(1+z^2)^{-1-q/2} \,\,\,\text{ and }\,\,\, \phi _n^\mathrm {L}(z) = \frac{1}{\sqrt{\pi }}\,\left( \frac{z+{\mathrm{i}}}{z-{\mathrm{i}}}\right) ^n\,(1+z^2)^{q^*/2} \end{aligned}$$
(B.13)

for eigenvalue \(\lambda _n=-2{\mathrm{i}}n\). They satisfy the orthonormalisation condition

$$\begin{aligned} \int _\mathbb {R}{\mathrm{d}}z\,\phi _n^\mathrm {L}(z)^*\phi _m^\mathrm {R}(z)=\delta _{n,m} . \end{aligned}$$
(B.14)

The vectors \(\phi _n^\mathrm {R}(z)\), which are labelled by the two numbers (qn), play the same role as spherical harmonics for the group \(\mathrm {SO}(3)\).

To complete the analysis we introduce the ladder operators

$$\begin{aligned} \mathscr {D}_\pm (q) = \mathscr {D}_{\widetilde{K}}(q) \pm \,{\mathrm{i}}\, \mathscr {D}_{A}(q) =\pm {\mathrm{i}}\left( \frac{{\mathrm {d}}}{{\mathrm {d}}z} (z\pm {\mathrm{i}})^2 + q \,(z\pm {\mathrm{i}})\right) . \end{aligned}$$
(B.15)

In summary we have

$$\begin{aligned} \mathscr {D}_K(q) \phi _n^\mathrm {R}(z)&= -2{\mathrm{i}}n\,\phi _n^\mathrm {R}(z) \end{aligned}$$
(B.16)
$$\begin{aligned} \mathscr {D}_\pm (q) \phi _n^\mathrm {R}(z)&= -2\left( n \pm \frac{q+2}{2} \right) \phi _{n\pm 1}^\mathrm {R}(z) . \end{aligned}$$
(B.17)

Starting from the vector \(\phi _0^\mathrm {R}(z)\), the ladder operators allow to construct an infinite number of eigenvectors of \(\mathscr {D}_K(q)\), hence the irreducible representation has an infinite dimension, unless \((q+2)/2=-N\) is a negative integer, leading to only \(2N+1\) vectors, i.e. irreducible representation of finite dimension.

More can be found about group theoretical aspects of the problem in Ref. [36].

C Boundary Conditions for the Spectral Problems (3.33) and (6.17): Frisch–Lloyd Case (Matrices KN or \(\widetilde{K}N\))

1.1 C.1 Behaviour of \(\widehat{\varPhi }^\mathrm {R}_q(s)\) for \(s\rightarrow 0\)

Let us discuss the \(s\rightarrow 0^+\) behaviour of the solution of Eq. (6.17) (the analysis for Eq. (3.33) is similar). We expect that the solution presents analytic terms in s and also non analytic terms. Assume that the first terms of the \(s\rightarrow 0\) expansion are \(\widehat{\varPhi }^\mathrm {R}_q(s)\simeq 1+c\,s + \omega \,s^{a+1}\). Injecting this expansion in (6.17) and assuming \({\mathcal {L}}(s)\sim s\) for \(s\rightarrow 0\) (i.e. finite first moment of the weight \(v_n\)), we obtain \(-{\mathrm{i}}\,\omega \,a(a+1)\,s^{a}+\mathcal {O}(s)=\varLambda (q)-{\mathrm{i}}\,q\big (c+\omega \,(a+1)s^{a}\big )+\mathcal {O}(s)\), thus \(c=-{\mathrm{i}}\varLambda (q)/q\) and \(a=q\). Hence we conclude that

$$\begin{aligned} \boxed { \widehat{\varPhi }^\mathrm {R}_q(s) \underset{s\rightarrow 0}{=} 1 - \frac{{\mathrm{i}}\,\varLambda (q)}{q}\, s + \omega _q\, |s|^{q+1} +\mathcal {O}(s^2) } \end{aligned}$$
(C.1)

(these are the first terms when \(0\le q<1\)). The crucial point is that \(\omega _q\) is real as we now discuss. The \(s\rightarrow 0\) behaviour of the Fourier transform selects the asymptotic behaviour (3.35): writing

$$\begin{aligned} \widehat{\varPhi }^\mathrm {R}_q(s)&= \int {\mathrm{d}}z\, \varPhi ^\mathrm {R}_q(z) - \int {\mathrm{d}}z\, \varPhi ^\mathrm {R}_q(z) \left( 1-{\mathrm {e}}^{-{\mathrm{i}}sz}\right) \end{aligned}$$
(C.2)
$$\begin{aligned}&\underset{s\rightarrow 0}{\simeq } \int {\mathrm{d}}z\, \varPhi ^\mathrm {R}_q(z) - 2\mathcal {A}_q\,\varGamma (-1-q)\,\sin \left( \frac{\pi q}{2}\right) \,|s|^{q+1} +\mathrm {regular\,terms} . \end{aligned}$$
(C.3)

The coefficient controlling the power law tail (3.35), is proportional to \(\omega _q\) controlling the non analytic behaviour in (C.1): \(\omega _q=-2\varGamma (-1-q)\,\sin \left( \frac{\pi q}{2}\right) \mathcal {A}_q\). Hence \(\omega _q\) is real.

For \(q\rightarrow 0\), we get \(\omega _0=-\pi \,\mathcal {A}_0=-\pi \,{\mathcal {N}}\), where \({\mathcal {N}}\) is the integrated DoS of the disordered model. Thus (3.35) corresponds with the well-known expansion of the Fourier transform of the invariant density (see [58] and references therein) \( \hat{f}(s) = \widehat{\varPhi }^\mathrm {R}_0(s) = 1 - \pi \,{\mathcal {N}}\, |s| - {\mathrm{i}}\,\gamma _1\,s + \mathcal {O}(s^2) \), as it should.

1.2 C.2 Expansion in Powers of q

Let us discuss the consequences for the \(s\rightarrow 0\) behaviour of the functions in the expansion (5.2). The term \(\mathcal {O}(q^n)\) of (C.1) has the form

$$\begin{aligned} \widehat{R}_n(s) \underset{s\rightarrow 0}{\simeq } |s|\sum _{m=0}^n \beta _{n,m}\,\ln ^m|s| +\mathrm {regular\,terms} . \end{aligned}$$
(C.4)

The coefficients \(\beta _{n,m}\) are real since \(\omega _q\) is real. In particular, since \(\omega _0=-\pi {\mathcal {N}}\), we find \(\beta _{n,n}=-\pi {\mathcal {N}}/n!\). Let us apply these considerations to \(\widehat{R}_1(s)\) and \(\widehat{R}_2(s)\). We find

$$\begin{aligned} \widehat{R}_1'' (s) \underset{s\rightarrow 0}{\simeq } \frac{\beta _{1,1}}{|s|} + 2\beta _{1,0}\,\delta (s) +\mathrm {regular\,terms} \end{aligned}$$
(C.5)

so that \({\mathrm{i}}s\widehat{R}_1'' (s)\simeq {\mathrm{i}}\beta _{1,1}{{\mathrm {sign}}}(s)\) for \(s\rightarrow 0\); this shows that \({{\mathrm {Re}}}[{\mathrm{i}}s\widehat{R}_1'' (s)]\rightarrow 0\) in this limit.

We have also

$$\begin{aligned} \widehat{R}_2'' (s) \underset{s\rightarrow 0}{\simeq } 2\beta _{2,2}\frac{\ln |s|+1}{|s|} + \frac{\beta _{2,1}}{|s|} +2\beta _{2,0}\,\delta (s) +\mathrm {regular\,terms} \end{aligned}$$
(C.6)

As a result, \({\mathrm{i}}s\widehat{R}_2'' (s)\) is logarithmically divergent for \(s\rightarrow 0\), however \({{\mathrm {Re}}}[{\mathrm{i}}s\widehat{R}_2'' (s)]\rightarrow 0\). These remarks were used in Sects. 5.1 and 6.

D The Distribution \(\mathrm {Pf}(1/|x|)\)

Consider a regular function \(\psi (x)\), decaying at infinity. We define the distribution \(\mathrm {Pf}(1/|x|)\) as

$$\begin{aligned} \int _{-\infty }^{+\infty } {\mathrm{d}}x\, \psi (x) \, \mathrm {Pf}\frac{1}{|x|} {\mathop {=}\limits ^{{\mathrm{def}}}}\lim _{\epsilon \rightarrow 0^+} \left[ \left( \int _{-\infty }^{-\epsilon } + \int _{+\epsilon }^{+\infty }\right) {\mathrm{d}}x\,\frac{\psi (x)}{|x|} +2\,\psi (0)\,\ln \epsilon \right] \,, \end{aligned}$$
(D.1)

in the same spirit as Hadamard’s regularization of the integral \(\int {\mathrm{d}}x\,\psi (x)/x^2\). Equivalently, using \(\Big (\int _{-1}^{-\epsilon }+\int _\epsilon ^1\Big ){\mathrm{d}}x/|x|=-2\ln \epsilon \), we can avoid the regulator and define the distribution as

$$\begin{aligned} \int _{-\infty }^{+\infty } {\mathrm{d}}x\, \psi (x) \, \mathrm {Pf}\frac{1}{|x|} {\mathop {=}\limits ^{{\mathrm{def}}}}\left( \int _{-\infty }^{-1} + \int _{+1}^{+\infty }\right) {\mathrm{d}}x\,\frac{\psi (x)}{|x|} + \int _{-1}^{+1}{\mathrm{d}}x\,\frac{\psi (x)-\psi (0)}{|x|} . \end{aligned}$$
(D.2)

We can check two useful properties:

$$\begin{aligned} \big [ \mathrm {sign}(x)\,\ln |x| \big ] ' = \mathrm {Pf}\frac{1}{|x|} \qquad \text{ and }\qquad \big [ |x|\,(\ln |x|-1) \big ] '' = \mathrm {Pf}\frac{1}{|x|} \end{aligned}$$
(D.3)

where derivation is understood here in the distributional sense.

Application: The distribution can be used in order to write the solution of the equation

$$\begin{aligned} \left( -\frac{{\mathrm {d}}^2}{{\mathrm {d}}x^2} + k^2 \right) \varphi (x) = \frac{1}{|x|} \,, \end{aligned}$$
(D.4)

which is a simplified version of Eq. (5.16). The solution is expected to be continuous at \(x=0\), but non differentiable as \( \varphi (x) \simeq \varphi (0) -|x|\,\big (\ln |x|-1\big )\) for \(x\rightarrow 0\). The finite part allows to write the solution under the integral form

$$\begin{aligned} \varphi (x) = \int _{-\infty }^{+\infty } {\mathrm{d}}y\, G(x-y) \, \mathrm {Pf}\frac{1}{|y|} \qquad \text{ for } x\ne 0 \,, \end{aligned}$$
(D.5)

where \(G(x)=(2k)^{-1}{\mathrm {e}}^{-k|x|}\) is the Green’s function. The integral is well defined thanks to the finite part.

E Continuum Limit of the Frisch–Lloyd Model: The Halperin Model

The disordered model (1.7) for a Gaussian white noise potential \( \left\langle V(x)V(x') \right\rangle =\sigma \,\delta (x-x') \) corresponds to the so-called Halperin model [62, 69]. It can be recovered from the impurity models in two different manners. As discussed in Sect. 7.2, the continuum limit for fixed angles (regular lattice of impurities) leads to the Halperin model. The high impurity density limit of the Frisch–Lloyd model, \(\rho \rightarrow \infty \), with \(v_n\rightarrow 0\), also leads to the Halperin model (this limit was already studied by Frisch and Lloyd in [48]). The Halperin model has been extensively studied in the literature. In particular the fluctuations have been analysed in [90, 92] and the generalized Lyapunov exponent in [52]. Hence it is a good case to benchmark the method of the present article. In this appendix, we establish the correspondence with the equations studied in these papers. Considering the limit \(\rho \rightarrow \infty \) and \(v_n\rightarrow 0\) in Eqs. (3.33,6.15), keeping \(\rho \left\langle v_n \right\rangle =0\) and \(\rho \left\langle v_n^2 \right\rangle =\sigma \) fixed, leads to

$$\begin{aligned} \left[ \mathscr {G}^\dagger + q\, z \right] \varPhi ^\mathrm {R}_q(z) = \varLambda (q)\, \varPhi ^\mathrm {R}_q(z) \qquad \text{ where } \mathscr {G}^\dagger = \frac{\sigma }{2}\frac{{\mathrm {d}}^2}{{\mathrm {d}}z^2} + \frac{{\mathrm {d}}}{{\mathrm {d}}z}( E + z^2 ) \end{aligned}$$
(E.1)

is the (forward) generator of the diffusion for the Riccati variable \(z(x)=\psi '(x)/\psi (x)\) involved in the localisation problem [35, 48, 62, 70]. Eq. (E.1) is precisely the equation given in Refs. [52, 90].

It is interesting to discuss the origin of (6.21) without using Fourier transform. A convenient starting point is the equation in real space for the \(q^n\) order contribution to \(\varPhi ^\mathrm {R}_q(z)\):

$$\begin{aligned} \mathscr {G}^\dagger R_n(z)=(\gamma _1-z)R_{n-1}(z) + \sum _{m=2}^n\frac{\gamma _m}{m!}R_{n-m}(z) . \end{aligned}$$
(E.2)

In order to get \(\gamma _1\), one can integrate the perturbation equation at order \(q^1\):

$$\begin{aligned} \lim _{X\rightarrow +\infty }\int _{-X}^{+X}{\mathrm{d}}z\, \left[ \mathscr {G}^\dagger R_1(z)+(z-\gamma _1)R_0(z) \right] = 0 \end{aligned}$$
(E.3)

thus, using the normalisation \(\int R_0=\int f=1\),

(E.4)

where the principal part is important as \(\mathscr {G}^\dagger R_1(z)\simeq z \, R_0(z) \simeq {\mathcal {N}}/z\) at infinity. This corresponds to (6.19). Similarly, starting from the equation at order \(q^2\), \(\mathscr {G}^\dagger R_2(z)=(\gamma _1-z)R_1(z)+(1/2)\gamma _2f(z)\), we integrate and get (note that \( R_2(z) \sim \ln ^2|z|/z^2\) for \(z\rightarrow \infty \), cf. Appendix C, hence the importance of the principal part). This leads to

$$\begin{aligned} \gamma _2 = \lim _{s\rightarrow 0}{\mathrm{i}}\, \left[ \widehat{R}_1'(s)+\widehat{R}_1'(-s)\right] -2\, \gamma _1\,\widehat{R}_1(0) \end{aligned}$$
(E.5)

or more conveniently (6.21). The final result is given in the text, Eq. (6.23) where \({\hat{f}}(s)=\varphi (s)/\varphi (0)\) is given by (5.7).

The adjoint spectral problem.— In the paper, we have considered the spectral problem (3.24) for \(\varPhi ^\mathrm {R}_q(z)\). We can equivalently work with the adjoint problem, which here takes the form

$$\begin{aligned} \left[ \mathscr {G} + q\, z \right] \varPhi ^\mathrm {L}_q(z) = \varLambda (q)\, \varPhi ^\mathrm {L}_q(z) \qquad \text{ where } \mathscr {G} = \frac{\sigma }{2}\frac{{\mathrm {d}}^2}{{\mathrm {d}}z^2} -(E+z^2) \frac{{\mathrm {d}}}{{\mathrm {d}}z} . \end{aligned}$$
(E.6)

We expand the vector as \(\varPhi ^\mathrm {L}_q(z)=\sum _{n=0}^\infty q^n\,L_n(z)\) with \(L_0(z)=1\). In particular, at order \(q^1\) we get

$$\begin{aligned} \mathscr {G} L_1(z)=\gamma _1-z . \end{aligned}$$
(E.7)

Multiplication by f(z) and integration gives (using ). Similarly, imposing the condition \(\int {\mathrm{d}}z\,L_1(z)\,f(z)=0\), we get . This is analogous to the general discussion for functionals of stochastic processes provided in Sect. 1.

F Phase Formalism for the Frisch–Lloyd Model

The Frisch–Lloyd model for impurities at random positions can be conveniently studied with the phase formalism of Refs. [7, 69]. This allows to derive some simple asymptotic behaviours. Furthermore, we can obtain approximate formulae beyond the perturbative regime.

1.1 F.1 Phase Formalism

The starting point is to parametrize the wave function as \( \psi (x) = {\mathrm {e}}^{\xi (x)} \, \sin \theta (x) \) and \(\psi '(x) = k{\mathrm {e}}^{\xi (x)} \, \cos \theta (x)\) for \(E=+k^2\). The two variables obey the differential equations \(\theta '(x)=k-\big [V(x)/k\big ]\,\sin ^2\theta \) and \(\xi '(x)=\big [V(x)/(2k)\big ]\,\sin 2\theta \). The Lyapunov exponent and the variance can be obtained by studying the drift and the diffusion constant of the process \(\xi (x)\), corresponding roughly to \(\ln |\psi (x)|\) (cf. remark in [32, p. 442]). This process is constant between two impurities, and make a jump of [17, 99]

$$\begin{aligned} \varDelta \xi _n =\xi (x_n^+) - \xi (x_n^-) = \frac{1}{2}\ln \left( 1 + \frac{v_n}{k}\sin 2\theta _n^- + \frac{v_n^2}{k^2}\sin ^2\theta _n^- \right) \end{aligned}$$
(F.1)

through the impurity n. In the \(k\gg \rho \) limit, we can assume that the phase \(\theta _n^-=\theta (x_n^-)=k\ell _n+\theta (x_n^+)\) modulo \(\pi \) is uniformly distributed over \([0,\pi ]\). As a consequence, the increments (F.1) are independent and one can easily compute their moments. Using the independence assumption, we conclude that \(\xi (x)\) is a compound Poisson process

$$\begin{aligned} \xi (x) = \sum _{n=1}^{\mathscr {N}(x)} \varDelta \xi _n \,, \end{aligned}$$
(F.2)

where \(\mathscr {N}(x)\) is a Poisson process of intensity \(\rho \). The drift and the diffusion constant are

$$\begin{aligned} \gamma _1 = \lim _{x\rightarrow \infty }\frac{\left\langle \xi (x) \right\rangle }{x} \simeq \rho \, \left\langle \varDelta \xi _n \right\rangle \qquad \text{ and }\qquad \gamma _2= \lim _{x\rightarrow \infty }\frac{\mathrm {Var}(\xi (x))}{x} \simeq \rho \, \left\langle \varDelta \xi _n^2 \right\rangle \end{aligned}$$
(F.3)

(note that the diffusion constant involves the second moment of the increment due to the fact that the number of impurities fluctuates in a fixed interval [0, x]; if the number of impurities would be constant in the interval, \(\gamma _2\) would involve the variance of \(\varDelta \xi _n\)).

1.2 F.2 Universal (Perturbative) Regime

We fist consider the high energy regime \(\rho ,\,v_n\ll k=\sqrt{E}\). In this case we can expand the logarithm in (F.1), and eventually average over the phase. We see that the two moments are equal:

$$\begin{aligned} \gamma _1 \simeq \gamma _2 \simeq \frac{\rho \,\left\langle v_n^2 \right\rangle }{8E} \qquad \text{ for } E\rightarrow +\infty \,, \end{aligned}$$
(F.4)

which is the single parameter scaling property (as noticed in [99], this is only true for the leading order term; see also [94]).

1.3 F.3 Intermediate Regime for Weak Density

For weak density, in the intermediate (non perturbative) regime \(\rho \ll k\ll v_n\), the phase increment between impurities is \(k\ell _n\gg 1\), hence we can use that the phase \(\theta _n^-\) is uniformly distributed (phase randomization). We can also simplify the logarithm as \( \varDelta \xi _n \simeq \ln \left| \frac{v_n}{k}\sin \theta _n^-\right| \). Using that \(\int _0^\pi \frac{{\mathrm{d}}\theta }{\pi }\,\ln \sin \theta =-\ln 2\) and \(\int _0^\pi \frac{{\mathrm{d}}\theta }{\pi }\,\ln ^2\sin \theta =\frac{\pi ^2}{12}+\ln ^22\) we deduce

$$\begin{aligned} \gamma _1 \simeq \rho \, \left\langle \ln \frac{v_n}{2k} \right\rangle \qquad \text{ and } \qquad \gamma _2 \simeq \rho \, \frac{\pi ^2}{12} + \rho \, \left\langle \ln ^2\frac{v_n}{2k} \right\rangle \,, \end{aligned}$$
(F.5)

thus we expect \(\gamma _2\gg \gamma _1\). For an exponential distribution of weights \(\mathrm {Proba}\{v_n>x\}={\mathrm {e}}^{-x/v}\) we use \(\int _0^\infty {\mathrm{d}}x\,\ln x\,{\mathrm {e}}^{-x}=-\mathrm {C}\) and \(\int _0^\infty {\mathrm{d}}x\,\ln ^2 x\,{\mathrm {e}}^{-x}=\frac{\pi ^2}{6}+\mathrm {C}^2\), where \(\mathrm {C}\simeq 0.577\) is the Euler-Mascheroni constant. Eventually we deduce (6.27).

1.4 F.4 Large Negative Energy

For \(E=-k^2\), the process \(\xi (x)\) is not constant between the impurities, but grows as

$$\begin{aligned} \xi (x_{n+1}^-) - \xi (x_n^+) = k\ell _n + \frac{1}{2}\ln \left( \frac{\tan ^2(\theta _n^++\pi /4)+{\mathrm {e}}^{-4k\ell _n}}{\tan ^2(\theta _n^++\pi /4)+1}\right) \end{aligned}$$
(F.6)

where \(\theta _n^+=\theta (x_n^+)\). One must add this contribution to (F.1). Using that the phase is locked \(\theta _n^-\rightarrow \pi /4\) for \(E\rightarrow -\infty \), we can expand the total increment \( \varDelta \xi _n =\xi (x_{n+1}^-) - \xi (x_n^-)\) as

$$\begin{aligned} \varDelta \xi _n = k\ell _n + \frac{v_n}{2k} + \mathcal {O}\left( \frac{v_n^2}{k^2} \right) + \mathcal {O}\left( {\mathrm {e}}^{-4k\ell _n} \right) \end{aligned}$$
(F.7)

As a result

$$\begin{aligned} \gamma _1 \simeq k + \frac{\rho \left\langle v_n \right\rangle }{2k} \simeq \sqrt{-E+\rho \left\langle v_n \right\rangle } \qquad \text{ and } \qquad \gamma _2 \simeq \frac{\rho \left\langle v_n^2 \right\rangle }{4k^2} \end{aligned}$$
(F.8)

Interestingly, one has recovered the same property as for the Halperin model [90]

$$\begin{aligned} \gamma _2 \big |_{E=-k^2} \simeq 2\,\gamma _2 \big |_{E=+k^2} \qquad \text{ for } k\rightarrow \infty . \end{aligned}$$
(F.9)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Texier, C. Fluctuations of the Product of Random Matrices and Generalized Lyapunov Exponent. J Stat Phys 181, 990–1051 (2020). https://doi.org/10.1007/s10955-020-02617-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-020-02617-w

Keywords

Navigation