Skip to main content
Log in

Exponential Decay of Rényi Divergence Under Fokker–Planck Equations

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We prove the exponential convergence to the equilibrium, quantified by Rényi divergence, of the solution of the Fokker–Planck equation with drift given by the gradient of a strictly convex potential. This extends the classical exponential decay result on the relative entropy for the same equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ambrosio, L., Gigli, N., Savare, G.: Gradient Flows: In Metric Spaces and in the Space of Probability Measures. Lectures in Mathematics, 2nd edn. ETH Zürich, Birkhäuser, Basel (2008)

    MATH  Google Scholar 

  2. Arnold, A., Markowich, P., Toscani, G., Unterreiter, A.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker–Planck type equations. Commun. Partial Differ. Equ. 26(1–2), 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atar, R., Chowdhary, K., Dupuis, P.: Robust bounds on risk-sensitive functionals via Rényi divergence. SIAM/ASA J. Uncertain. Quantif. 3(1), 18–33 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Audenaert, K.M.R., Datta, N.: \(\alpha \)-\(z\)-Rényi relative entropies. J. Math. Phys. 56(2), 022202 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bakry, D., Émery, M.: Diffusions hypercontractives. Séminaire de Probabilités de Strasbourg. Lecture Notes in Mathematics, vol. 19, pp. 177–206. Springer, New York (1985)

    Google Scholar 

  6. Bakry, D., Gentil, I., Ledoux, M.: Analysis and Geometry of Markov Diffusion Operators. Springer, New York (2014)

    Book  MATH  Google Scholar 

  7. Bégin, L., Germain, P., Laviolette, F., Roy, J.F.: PAC-Bayesian bounds based on the Rényi divergence. In: AISTATS (2016)

  8. Benamou, J.D., Brenier, Y.: A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem. Numer. Math. 84(3), 375–393 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Brandão, F., Horodecki, M., Ng, N., Oppenheim, J., Wehner, S.: The second laws of quantum thermodynamics. Proc. Natl. Acad. Sci. USA 112(11), 3275–3279 (2015)

    Article  ADS  Google Scholar 

  10. Cao, Y., Lu, J., Lu, Y.: Gradient flow structure and exponential decay of the sandwiched Rényi divergence for primitive Lindblad equations with GNS-detailed balance. J. Math. Phys. 60, 052202 (2019). https://doi.org/10.1063/1.5083065

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Carlen, E.A., Frank, R.L., Lieb, E.H.: Inequalities for quantum divergences and the Audenaert-Datta conjecture. J. Phys. A 51(48), 483001 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. Carlen, E.A., Maas, J.: An analog of the 2-Wasserstein metric in non-commutative probability under which the Fermionic Fokker–Planck equation is gradient flow for the entropy. Commun. Math. Phys. 331(3), 887–926 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Carlen, E.A., Maas, J.: Gradient flow and entropy inequalities for quantum Markov semigroups with detailed balance. J. Funct. Anal. 273(5), 1810–1869 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Carrillo, J., Toscani, G.: Rényi entropy and improved equilibration rates to self-similarity for nonlinear diffusion equations. Nonlinearity 27, 3159 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Dolbeault, J., Nazaret, B., Savaré, G.: A new class of transport distances between measures. Calc. Var. Partial Differ. Equ. 34(2), 193–231 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dupuis, P., Katsoulakis, M.A., Pantazis, Y., Rey-Bellet, L.: Sensitivity Analysis for Rare Events Based on Rényi Divergence. arXiv:1805.06917 [math] (2018)

  17. Erbar, M., Maas, J.: Gradient flow structures for discrete porous medium equations. Discrete Contin. Dyn. Syst. Ser. A 34(4), 1355–1374 (2014)

    MathSciNet  MATH  Google Scholar 

  18. Frank, R.L., Lieb, E.H.: Monotonicity of a relative Rényi entropy. J. Math. Phys. 54(12), 122201 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Gilardoni, G.L.: On Pinsker’s and Vajda’s type inequalities for Csiszár’s \(f\)-divergences. IEEE Trans. Inf. Theory 56(11), 5377–5386 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gross, L.: Hypercontractivity and logarithmic Sobolev inequalities for the Clifford-Dirichlet form. Duke Math. J. 42(3), 383–396 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97(4), 1061 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Harremoës, P.: Interpretations of Rényi entropies and divergences. Phys. A 365(1), 57–62 (2006)

    Article  MathSciNet  Google Scholar 

  23. Jordan, R., Kinderlehrer, D., Otto, F.: The variational formulation of the Fokker–Planck equation. SIAM J. Math. Anal. 29(1), 1–17 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Maas, J.: Gradient flows of the entropy for finite Markov chains. J. Funct. Anal. 261(8), 2250–2292 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Markowich, P.A., Villani, C.: On the trend to equilibrium for the Fokker-Planck equation: An interplay between physics and functional analysis. In: Physics and Functional Analysis, Matematica Contemporanea (SBM) 19, pp. 1–29 (1999)

  26. Masi, M.: A step beyond Tsallis and Rényi entropies. Phys. Lett. A 338(3), 217–224 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Müller-Hermes, A., Franca, D.S.: Sandwiched Rényi convergence for quantum evolutions. Quantum 2, 55 (2018)

    Article  Google Scholar 

  28. Müller-Lennert, M., Dupuis, F., Szehr, O., Fehr, S., Tomamichel, M.: On quantum Rényi entropies: a new generalization and some properties. J. Math. Phys. 54(12), 122203 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Nielsen, F., Nock, R.: A closed-form expression for the Sharma-Mittal entropy of exponential families. J. Phys. A 45(3), 032003 (2012). arXiv:1105.3259

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Otto, F.: The geometry of dissipative evolution equations: the porous medium equation. Commun. Partial Differ. Equ. 26(1–2), 101–174 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  31. Otto, F., Villani, C.: Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality. J. Funct. Anal. 173(2), 361–400 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Raginsky, M., Sason, I.: Concentration of measure inequalities in information theory, communications, and coding. Found. Trends Commun. Inf. Theory 10(1–2), 1–246 (2013). arXiv:1212.4663

    Article  MATH  Google Scholar 

  34. Rényi, A.: On measures of entropy and information. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics, pp. 547–561. University of California Press (1961)

  35. Shayevitz, O.: On Rényi measures and hypothesis testing. In: Proceedings of 2011 IEEE ISIT, pp. 894–898. IEEE (2011)

  36. Toscani, G.: Entropy production and the rate of convergence to equilibrium for the Fokker–Planck equation. Q. Appl. Math. 57(3), 521–541 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J Stat. Phys. 52(1), 479–487 (1988)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. van Erven, T., Harremos, P.: Rényi divergence and Kullback-Leibler divergence. IEEE Trans. Inf. Theory 60(7), 3797–3820 (2014)

    Article  MATH  Google Scholar 

  39. Villani, C.: Topics in Optimal Transportation, vol. 58. American Mathematical Soc., Providence (2003)

    MATH  Google Scholar 

  40. Villani, C.: Entropy production and convergence to equilibrium. In: Golse, F., Olla, S. (eds.) Entropy Methods for the Boltzmann Equation, pp. 1–70. Springer, New York (2008)

    MATH  Google Scholar 

  41. Villani, C.: Optimal Transport: Old and New. Springer, New York (2009)

    Book  MATH  Google Scholar 

  42. Wilde, M.M., Winter, A., Yang, D.: Strong converse for the classical capacity of entanglement-breaking and Hadamard channels via a sandwiched Rényi relative entropy. Commun. Math. Phys. 331(2), 593–622 (2014)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

The work of YC and JL is supported in part by the National Science Foundation under grant DMS-1454939.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Cao.

Additional information

Communicated by Eric A. Carlen.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Y., Lu, J. & Lu, Y. Exponential Decay of Rényi Divergence Under Fokker–Planck Equations. J Stat Phys 176, 1172–1184 (2019). https://doi.org/10.1007/s10955-019-02339-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02339-8

Keywords

Navigation