Skip to main content
Log in

Recursion for the Smallest Eigenvalue Density of \(\beta \)-Wishart–Laguerre Ensemble

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The statistics of the smallest eigenvalue of Wishart–Laguerre ensemble is important from several perspectives. The smallest eigenvalue density is typically expressible in terms of determinants or Pfaffians. These results are of utmost significance in understanding the spectral behavior of Wishart–Laguerre ensembles and, among other things, unveil the underlying universality aspects in the asymptotic limits. However, obtaining exact and explicit expressions by expanding determinants or Pfaffians becomes impractical if large dimension matrices are involved. For the real matrices (\(\beta =1\)) Edelman has provided an efficient recurrence scheme to work out exact and explicit results for the smallest eigenvalue density which does not involve determinants or matrices. Very recently, an analogous recurrence scheme has been obtained for the complex matrices (\(\beta =2\)). In the present work we extend this to \(\beta \)-Wishart–Laguerre ensembles for the case when exponent \(\alpha \) in the associated Laguerre weight function, \(\lambda ^\alpha e^{-\beta \lambda /2}\), is a non-negative integer, while \(\beta \) is positive real. This also gives access to the smallest eigenvalue density of fixed trace \(\beta \)-Wishart–Laguerre ensemble, as well as moments for both cases. Moreover, comparison with earlier results for the smallest eigenvalue density in terms of certain hypergeometric function of matrix argument results in an effective way of evaluating these explicitly. Exact evaluations for large values of n (the matrix dimension) and \(\alpha \) also enable us to compare with Tracy–Widom density and large deviation results of Katzav and Castillo. We also use our result to obtain the density of the largest of the proper delay times which are eigenvalues of the Wigner–Smith matrix and are relevant to the problem of quantum chaotic scattering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. More generally, it is \(2\gamma /\beta \) for the \(\beta \)-ensemble.

References

  1. Mehta, M.L.: Random Matrices, 3rd edn. Academic Press, New York (2004)

    MATH  Google Scholar 

  2. Forrester, P.J.: Log-Gases and Random Matrices (LMS-34). Princeton University Press, Princeton, NJ (2010)

    Book  MATH  Google Scholar 

  3. Gnanadesikan, R.: Methods for Statistical Data Analysis of Multivariate Observations, 2nd edn. Wiley, New York (1997)

    Book  MATH  Google Scholar 

  4. Park, C.S., Lee, K.B.: Statistical multimode transmit antenna selection for limited feedback MIMO systems. IEEE Trans. Wirel. Commun. 7, 4432 (2008). https://doi.org/10.1109/T-WC.2008.060213

    Article  Google Scholar 

  5. Nishigaki, S.M., Damgaard, P.H., Wettig, T.: Smallest Dirac eigenvalue distribution from random matrix theory. Phys. Rev. D 58, 087704 (1998). https://doi.org/10.1103/PhysRevD.58.087704

    Article  ADS  Google Scholar 

  6. Damgaard, P.H., Nishigaki, S.M.: Distribution of the kth smallest Dirac operator eigenvalue. Phys. Rev. D. 63, 045012 (2001). https://doi.org/10.1103/PhysRevD.63.045012

    Article  ADS  MathSciNet  Google Scholar 

  7. Candes, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inform. Theory 52, 5406 (2006). https://doi.org/10.1109/TIT.2006.885507

    Article  MathSciNet  MATH  Google Scholar 

  8. Majumdar, S.N., Bohigas, O., Lakshminarayan, A.: Exact minimum eigenvalue distribution of an entangled random pure state. J. Phys. Stat. 131, 33 (2008). https://doi.org/10.1007/s10955-008-9491-5

    Article  MathSciNet  MATH  Google Scholar 

  9. Majumdar, S.N.: Extreme eigenvalues of wishart matrices: application to entangled bipartite system. In: Akemann, G. (ed.) Handbook of Random Matrix Theory. Oxford Press, New York (2011)

    Google Scholar 

  10. Chen, Y., Liu, D.-Z., Zhou, D.-S.: Smallest eigenvalue distribution of the fixed-trace Laguerre-ensemble. J. Phys. A: Math. Theor. 43, 315303 (2010). https://doi.org/10.1088/1751-8113/43/31/315303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Akemann, G., Vivo, P.: Compact smallest eigenvalue expressions in Wishart-Laguerre ensembles with or without a fixed trace. J. Mech. Stat. 2011, P05020 (2011). https://doi.org/10.1088/1742-5468/2011/05/P05020

    Article  MathSciNet  Google Scholar 

  12. Kumar, S., Sambasivam, B., Anand, S.: Smallest eigenvalue density for regular or fixed-trace complex Wishart-Laguerre ensemble and entanglement in coupled kicked tops. J. Phys. A: Math. Theor. 50, 345201 (2017). https://doi.org/10.1088/1751-8121/aa7d0e

    Article  MathSciNet  MATH  Google Scholar 

  13. Edelman, A., Guionnet, A., Péché, S.: Beyond universality in random matrix theory. Ann. Probab. Appl. 26, 1659 (2016). https://doi.org/10.1214/15-AAP1129

    Article  MathSciNet  MATH  Google Scholar 

  14. Khatri, C.G.: Distribution of the largest or the smallest characteristic root under null hypothesis concerning complex multivariate normal populations. Ann. Stat. Math. 35, 1807 (1964). https://doi.org/10.1214/aoms/1177700403

    Article  MathSciNet  MATH  Google Scholar 

  15. Forrester, P.J., Hughes, T.D.: Complex Wishart matrices and conductance in mesoscopic systems: exact results. J. Phys. Math. 35, 6739 (1994). https://doi.org/10.1063/1.530639

    MathSciNet  MATH  Google Scholar 

  16. Forrester, P.J.: The spectrum edge of random matrix ensembles. Nucl. Phys. B 402, 709 (1993). https://doi.org/10.1016/0550-3213(93)90126-A

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Forrester, P.J.: Exact results and universal asymptotics in the Laguerre random matrix ensemble. J. Phys. Math. 35, 2539 (1994). https://doi.org/10.1063/1.530883

    Article  MathSciNet  MATH  Google Scholar 

  18. Nagao, T., Forrester, P.J.: The smallest eigenvalue distribution at the spectrum edge of random matrices. Nucl. Phys. B. 509, 561 (1998). https://doi.org/10.1016/S0550-3213(97)00670-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Zanella, A., Chiani, M., Win, M.Z.: On the marginal distribution of the eigenvalues of Wishart matrices. IEEE Trans. Commun. 57, 1050 (2009). https://doi.org/10.1109/TCOMM.2009.04.070143

    Article  Google Scholar 

  20. Forrester, P.J.: Eigenvalue distributions for some correlated complex sample covariance matrices. J. Phys. A: Math. Theor. 40, 11093 (2007). https://doi.org/10.1088/1751-8113/40/36/009

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Wirtz, T., Guhr, T.: Distribution of the smallest eigenvalue in the correlated Wishart model. Phys. Lett. Rev. 111, 094101 (2013). https://doi.org/10.1103/PhysRevLett.111.094101

    Article  ADS  Google Scholar 

  22. Edelman, A.: Eigenvalues and condition numbers of random matrices. Ph.D. thesis, MIT. http://www-math.mit.edu/~edelman/publications/eigenvalues_and_condition_numbers.pdf (1989)

  23. Edelman, A.: The distribution and moments of the smallest eigenvalue of a random matrix of Wishart type. Linear Appl. Alg. 159, 55 (1991). https://doi.org/10.1016/0024-3795(91)90076-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Phys. Lett. B 305, 115 (1993). https://doi.org/10.1016/0370-2693(93)91114-3

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Phys. Math. 159, 151 (1994). https://doi.org/10.1007/BF02100489

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Tracy, C.A., Widom, H.: Level spacing distributions and the Bessel kernel. Commun. Phys. Math. 161, 289 (1994). https://doi.org/10.1007/BF02099779

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Feldheim, O.N., Sodin, S.: A universality result for the smallest eigenvalues of certain sample covariance matrices. Geom. Funct. Anal. 20, 88 (2010). https://doi.org/10.1007/s00039-010-0055-x

    Article  MathSciNet  MATH  Google Scholar 

  28. Katzav, E., Castillo, I.P.: Large deviations of the smallest eigenvalue of the Wishart-Laguerre ensemble. Phys. Rev. E 82(R), 040104 (2010). https://doi.org/10.1103/PhysRevE.82.040104

    Article  ADS  MathSciNet  Google Scholar 

  29. Haake, F., Kuś, M., Scharf, R.: Classical and quantum chaos for a kicked top. Z. Phys. B Condens. Matter 65, 381 (1987). https://doi.org/10.1007/BF01303727

    Article  ADS  MathSciNet  Google Scholar 

  30. Haake, F.: Quantum Signatures of Chaos, 3rd edn. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  31. Dumitriu, I., Edelman, A.: Matrix models for beta ensembles. J. Math. Phys. 43, 5830 (2002). https://doi.org/10.1063/1.4818304

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Eisenbud, L.: The formal properties of nuclear collisions. PhD Thesis. Princeton University, Princeton (1948)

  33. Wigner, E.P.: Lower limit for the energy derivative of the scattering phase shift. Phys. Rev. 98, 145 (1995). https://doi.org/10.1103/PhysRev.98.145

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Smith, F.T.: Lifetime matrix in collision theory. Phys. Rev. 118, 349 (1960). https://doi.org/10.1103/PhysRev.118.349

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Brouwer, P.W., Frahm, K.M., Beenakker, C.W.J.: Quantum mechanical time-delay matrix in chaotic scattering. Phys. Rev. Lett. 78, 4737 (1997). https://doi.org/10.1103/PhysRevLett.78.4737

    Article  ADS  Google Scholar 

  36. Brouwer, P.W., Frahm, K.M., Beenakker, C.W.J.: Distribution of the quantum mechanical time-delay matrix for a chaotic cavity. Waves Random Media 9, 91 (1999). https://doi.org/10.1088/0959-7174/9/2/303

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Sommers, H.-J., Savin, D.V., Sokolov, V.V.: Distribution of proper delay times in quantum chaotic scattering: a crossover from ideal to weak coupling. Phys. Rev. Lett. 87, 094101 (2001). https://doi.org/10.1103/PhysRevLett.87.094101

    Article  ADS  Google Scholar 

  38. Texier, C.: Wigner time delay and related concepts: application to transport in coherent conductors. Phys. E Low Dimens. Syst. Nanostruct. 82, 16 (2016). https://doi.org/10.1016/j.physe.2015.09.041

    Article  ADS  Google Scholar 

  39. Fyodorov, Y.V., Sommers, H.-J.: Statistics of resonance poles, phase shifts and time delays in quantum chaotic scattering: random matrix approach for systems with broken time-reversal invariance. J. Math. Phys. 38, 1918 (1997). https://doi.org/10.1063/1.531919

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Ramírez, J., Rider, B., Virág, B.: Beta ensembles, stochastic Airy spectrum, and a diffusion. J. Math. Soc. Am. 24, 919 (2011). https://doi.org/10.1090/S0894-0347-2011-00703-0

    Article  MathSciNet  MATH  Google Scholar 

  41. Majumdar, S.N., Schehr, G.: Top eigenvalue of a random matrix: large deviations and third order phase transition. J. Stat. Mech. 2014, P01012 (2014)

    Article  MathSciNet  Google Scholar 

  42. Borot, G., Eynard, B., Majumdar, S.N., Nadal, C.: Large deviations of the maximal eigenvalue of random matrices. J. Stat. Mech. Theory Exp. 2011, P11024 (2011). https://doi.org/10.1088/1742-5468/2011/11/P11024

    Article  MathSciNet  Google Scholar 

  43. Borot, G., Nadal, C.: Right tail expansion of Tracy-Widom beta laws. Random Matrices: Theory Appl. 01, 1250006 (2012). https://doi.org/10.1142/S2010326312500062

    Article  MathSciNet  MATH  Google Scholar 

  44. Dumaz, L., Virág, B.: The right tail exponent of the Tracy-Widom-distribution. Ann. Inst. H. Poincaré Probab. Stat. 49, 915 (2013). https://doi.org/10.1214/11-AIHP475

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Forrester, P.J., Rahman, A.A., Witte, N.S.: Large N expansions for the Laguerre and Jacobi-ensembles from the loop equations. J. Math. Phys. 58, 113303 (2017). https://doi.org/10.1063/1.4997778

    Article  ADS  MathSciNet  MATH  Google Scholar 

  46. Killip, R., Nenciu, I.: Matrix models for circular ensembles. Int. Math. Res. Not. 2004, 2664 (2004). https://doi.org/10.1155/S1073792804141597

    Article  MathSciNet  MATH  Google Scholar 

  47. Forrester, P.J.: Beta Random Matrix Ensembles. Lecture Notes Series, IMS, NUS, vol. 18. World Scientific, Singapore (2009)

  48. Desrosiers, P., Liu, D.-Z.: Asymptotics for products of characteristic polynomials in classical \(\beta \)-ensembles. Constr. Approx. 39, 273 (2014). https://doi.org/10.1007/s00365-013-9206-2

    Article  MathSciNet  MATH  Google Scholar 

  49. Desrosiers, P., Forrester, P.J.: Hermite and Laguerre \(\beta \)-ensembles: asymptotic corrections to the eigenvalue density. Nucl. Phys. B 743, 307 (2006). https://doi.org/10.1016/j.nuclphysb.2006.03.002

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Caër G, L., Male, C., Delannay, R.: Nearest-neighbour spacing distributions of the \(\beta \)-Hermite ensemble of random matrices. Physica A 383, 190 (2007). https://doi.org/10.1016/j.physa.2007.04.057

    Article  ADS  Google Scholar 

  51. Dumitriu, I., Edelman, A.: Global spectrum fluctuations for the \(\beta \)-Hermite and \(\beta \)-Laguerre ensembles via matrix models. J. Math. Phys. 47, 063302 (2006). https://doi.org/10.1063/1.2200144

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Papenbrock, T., Pluhar, Z., Weidenmüller, H.A.: Level repulsion in constrained Gaussian random-matrix ensembles. J. Phys. A: Math. Gen. 39, 9709 (2006). https://doi.org/10.1088/0305-4470/39/31/004

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Shukla, P., Sadhukhan, S.: Random matrix ensembles with column/row constraints: I. J. Phys. A: Math. Theor. 48, 415002 (2015). https://doi.org/10.1088/1751-8113/48/41/415002

    Article  MathSciNet  MATH  Google Scholar 

  54. Shukla, P., Sadhukhan, S.: Random matrix ensembles with column/row constraints: II. J. Phys. A: Math. Theor. 48, 415003 (2015). https://doi.org/10.1088/1751-8113/48/41/415003

    Article  MathSciNet  MATH  Google Scholar 

  55. Rosenzweig, N.: In: Uhlenbeck, G. et al. (eds.) Statistical Physics. Benjamin, New York (1963)

  56. Bronk, B.V.: Topics in the Theory of Random Matrices. Ph. D. thesis. Princeton University, Princeton (1964)

  57. Akemann, G., Cicuta, G.M., Molinari, L., Vernizzi, G.: Compact support probability distributions in random matrix theory. Phys. Rev. E 59, 1489 (1999). https://doi.org/10.1103/PhysRevE.59.1489

    Article  ADS  MathSciNet  Google Scholar 

  58. Lloyd, S., Pagels, H.: Complexity as thermodynamic depthe. Ann. Phys. 188, 186 (1988). https://doi.org/10.1016/0003-4916(88)90094-2

    Article  ADS  Google Scholar 

  59. Życzkowski, K., Sommers, H.-J.: Induced measures in the space of mixed quantum states. J. Phys. A: Math. Gen. 34, 7111 (2001). https://doi.org/10.1088/0305-4470/34/35/335

    Article  ADS  MathSciNet  MATH  Google Scholar 

  60. Page, D.N.: Average entropy of a subsystem. Phys. Rev. Lett. 71, 1291 (1993). https://doi.org/10.1103/PhysRevLett.71.1291

    Article  ADS  MathSciNet  MATH  Google Scholar 

  61. Kumar, S., Pandey, A.: Entanglement in random pure states: spectral density and average von Neumann entropy. J. Phys. A: Math. Theor. 44, 445301 (2011). https://doi.org/10.1088/1751-8113/44/44/445301

    Article  ADS  MathSciNet  MATH  Google Scholar 

  62. Vivo, P., Pato, M.P., Oshanin, G.: Random pure states: quantifying bipartite entanglement beyond the linear statistics. Phys. Rev. E 93, 052106 (2016). https://doi.org/10.1103/PhysRevE.93.052106

    Article  ADS  Google Scholar 

  63. Wei, L.: Proof of Vivo-Pato-Oshanin’s conjecture on the fluctuation of von Neumann entropy. Phys. Rev. E 96, 022106 (2017). https://doi.org/10.1103/PhysRevE.96.022106

    Article  ADS  MathSciNet  Google Scholar 

  64. Forrester, P.J.: Recurrence equations for the computation of correlations in the \(1/r^2\) quantum many-body system. J. Stat. Phys. 72, 39 (1993). https://doi.org/10.1007/BF01048039

    Article  ADS  MATH  Google Scholar 

  65. Forrester, P.J., Rains, E.M.: A Fuchsian matrix differential equation for Selberg correlation integrals. Commun. Math. Phys. 309, 771 (2012). https://doi.org/10.1007/s00220-011-1305-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  66. Forrester, P.J., Ito, M.: Difference system for Selberg correlation integrals. J. Phys. A: Math. Theor. 43, 175202 (2010). https://doi.org/10.1088/1751-8113/43/17/175202

    Article  ADS  MathSciNet  MATH  Google Scholar 

  67. Savin, D.V., Sommers, H.-J., Wieczorek, W.: Nonlinear statistics of quantum transport in chaotic cavities. Phys. Rev. B 77, 125332 (2008). https://doi.org/10.1103/PhysRevB.77.125332

    Article  ADS  Google Scholar 

  68. Akemann, G., Guhr, T., Kieburg, M., Wegner, R., Wirtz, T.: Completing the picture for the smallest eigenvalue of real Wishart matrices. Phys. Rev. Lett. 113, 250201 (2014). https://doi.org/10.1103/PhysRevLett.113.250201

    Article  ADS  MATH  Google Scholar 

  69. Wirtz, T., Akemann, G., Guhr, T., Kieburg, M., Wegner, R.: The smallest eigenvalue distribution in the real Wishart-Laguerre ensemble with even topology. J. Phys. A: Math. Theor. 48, 245202 (2015). https://doi.org/10.1088/1751-8113/48/24/245202

    Article  ADS  MathSciNet  MATH  Google Scholar 

  70. Fyodorov, Y.V., Nock, A.: On random matrix averages involving half-integer powers of GOE characteristic polynomials. J. Stat. Phys. 159, 731 (2015). https://doi.org/10.1007/s10955-015-1209-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  71. Berbenni-Bitsch, M.E., Meyer, S., Wettig, T.: Microscopic universality with dynamical fermions. Phys. Rev. D 58(R), 71502 (1998). https://doi.org/10.1103/PhysRevD.58.071502

    Article  ADS  Google Scholar 

  72. Wolfram Research Inc. Mathematica Version 11.0. Wolfram Research Inc, Champaign, IL (2016)

  73. Koev, P., Edelman, A.: The efficient evaluation of the hypergeometric function of a matrix argument. Math. Comput. 75, 833 (2006). http://www.ams.org/journals/mcom/2006-75-254/S0025-5718-06-01824-2/S0025-5718-06-01824-2.pdf

  74. Koev, P.: Hypergeometric Function of a Matrix Argument, Online (2008). http://www-math.mit.edu/~plamen/software/mhgref.html

  75. Borodin, A., Forrester, P.J.: Increasing subsequences and the hard-to-soft edge transition in matrix ensembles. J. Phys. A: Math. Gen. 36, 2963 (2003). https://doi.org/10.1088/0305-4470/36/12/307

    Article  ADS  MathSciNet  MATH  Google Scholar 

  76. Ma, Z.: Accuracy of the Tracy-Widom limits for the extreme eigenvalues in white Wishart matrices. Bernoulli 18, 322 (2012). https://doi.org/10.3150/10-BEJ334

    Article  MathSciNet  MATH  Google Scholar 

  77. Baik, J., Buckingham, R., DiFranco, J.: Asymptotics of Tracy-Widom distributions and the total integral of a Painlevé II function. Commun. Math. Phys. 280, 463 (2008). https://doi.org/10.1007/s00220-008-0433-5

    Article  ADS  MATH  Google Scholar 

  78. Brouwer, P.W., van Langen, S.A., Frahm, K.M., Büttiker, M., Beenakker, C.W.J.: Distribution of parametric conductance derivatives of a quantum dot. Phys. Rev. Lett. 79, 913 (1997). https://doi.org/10.1103/PhysRevLett.79.913

    Article  ADS  Google Scholar 

  79. Schomerus, H., van Bemmel, K.J.H., Beenakker, C.W.J.: Localization-induced coherent backscattering effect in wave dynamics. Phys. Rev. E 63, 026605 (2001). https://doi.org/10.1103/PhysRevE.63.026605

    Article  ADS  Google Scholar 

  80. Marciani, M., Brouwer, P.W., Beenakker, C.W.J.: Time-delay matrix, midgap spectral peak, and thermopower of an Andreev billiard. Phys. Rev. B 90, 045403 (2014). https://doi.org/10.1103/PhysRevB.90.045403

    Article  ADS  Google Scholar 

  81. Schomerus, H., Marciani, M., Beenakker, C.W.J.: Effect of chiral symmetry on chaotic scattering from majorana zero modes. Phys. Rev. Lett. 114, 166803 (2015). https://doi.org/10.1103/PhysRevLett.114.166803

    Article  ADS  Google Scholar 

  82. Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times, and random matrix theory: I. J. Math. Phys. 52, 103511 (2011). https://doi.org/10.1063/1.3644378

    Article  ADS  MathSciNet  MATH  Google Scholar 

  83. Mezzadri, F., Simm, N.J.: Moments of the transmission eigenvalues, proper delay times and random matrix theory: II. J. Math. Phys. 53, 053504 (2012). https://doi.org/10.1063/1.4708623

    Article  ADS  MathSciNet  MATH  Google Scholar 

  84. Mezzadri, F., Simm, N.J.: \(\tau \)-function theory of quantum chaotic transport with \(\beta \) = 1, 2, 4. Commun. Math. Phys. 324, 465 (2013). https://doi.org/10.1007/s00220-013-1813-z

    Article  ADS  MATH  Google Scholar 

  85. Texier, C., Majumdar, S.N.: Wigner time-delay distribution in chaotic cavities and freezing transition. Phys. Rev. Lett. 110, 250602 (2013). https://doi.org/10.1103/PhysRevLett.110.250602

    Article  ADS  Google Scholar 

  86. Kuipers, J., Savin, D.V., Sieber, M.: Efficient semiclassical approach for time delays. New J. Phys. 16, 123018 (2014). https://doi.org/10.1088/1367-2630/16/12/123018

    Article  ADS  Google Scholar 

  87. Cunden, F.D.: Statistical distribution of the Wigner-Smith time-delay matrix moments for chaotic cavities. Phys. Rev. E 91(R), 060102 (2015). https://doi.org/10.1103/PhysRevE.91.060102

    Article  ADS  MathSciNet  Google Scholar 

  88. Cunden, F.D., Mezzadri, F., Simm, N., Vivo, P.: Correlators for the Wigner-Smith time-delay matrix of chaotic cavities. J. Phys. A: Math. Theor. 49, 18LT01 (2016). https://doi.org/10.1088/1751-8113/49/18/18LT01

    Article  MathSciNet  MATH  Google Scholar 

  89. Cunden, F.D., Mezzadri, F., Simm, N., Vivo, P.: Large-N expansion for the time-delay matrix of ballistic chaotic cavities. J. Math. Phys. 57, 111901 (2016). https://doi.org/10.1063/1.4966642

    Article  ADS  MathSciNet  MATH  Google Scholar 

  90. Mahaux, C., Weidenmüller, H.A.: Shell Model Approach to Nuclear Reactions. North Holland, Amsterdam (1969)

    Google Scholar 

  91. Verbaarschot, J.J.M., Weidenmüller, H.A., Zirnbauer, M.R.: Grassmann integration in stochastic quantum physics: the case of compound-nucleus scattering. Phys. Rep. 129, 367 (1985). https://doi.org/10.1016/0370-1573(85)90070-5

    Article  ADS  MathSciNet  Google Scholar 

  92. Kumar, S., Nock, A., Sommers, H.-J., Guhr, T., Dietz, B., Miski-Oglu, M., Richter, A., Schäfer, : Distribution of scattering matrix elements in quantum chaotic scattering. Phys. Rev. Lett. 111, 030403 (2013). https://doi.org/10.1103/PhysRevLett.111.030403

    Article  ADS  Google Scholar 

  93. Nock, A., Kumar, S., Sommers, H.-J., Guhr, T.: Distributions of off-diagonal scattering matrix elements: exact results. Ann. Phys. 342, 103 (2014). https://doi.org/10.1016/j.aop.2013.11.006

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Altland, A., Zirnbauer, M.R.: Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures. Phys. Rev. B 55, 1142 (1997). https://doi.org/10.1016/S0550-3213(96)00542-1

    Article  ADS  Google Scholar 

  95. Zirnbauer, M.R.: Riemannian symmetric superspaces and their origin in random matrix theory. J. Phys. Math. 37, 4986 (1996). https://doi.org/10.1063/1.531675

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to Prof. Katzav for fruitful correspondences. He also thanks the anonymous reviewer whose comments helped improve the manuscript. This work has been supported by the grant EMR/2016/000823 provided by SERB, DST, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Proof of Recurrence Scheme

The proof of the recurrence scheme for general \(\beta \) is similar to the one given by Edelman for \(\beta =1\) case [22, 23]. It was also extended recently for \(\beta =2\) case [12]. The smallest eigenvalue density can be obtained from the joint probability density of eigenvalues as

$$\begin{aligned} f(x)=n\int _x^\infty d\lambda _2\cdots \int _x^\infty d\lambda _n \,P(x,\lambda _2,\ldots ,\lambda _n). \end{aligned}$$
(A.1)

We now consider \(\lambda _i\rightarrow \lambda _i+x\), followed by shift of indices of the integration variables as \(\lambda _i\rightarrow \lambda _{i-1}\). This gives

$$\begin{aligned} f(x)= & {} nC_{n,\alpha ,\beta }\, x^\alpha e^{-\beta n x/2} \int _0^\infty d\lambda _1\cdots \int _0^\infty d\lambda _{n-1}\prod _{1\le k<j\le n-1}|\lambda _j-\lambda _k|^\beta \nonumber \\&\times \prod _{i=1}^{n-1}\lambda _i^\beta (\lambda _i+x)^\alpha e^{-\beta \lambda _i/2}. \end{aligned}$$
(A.2)

We now introduce the measure \(d\Omega _i=\lambda _i^\beta \,e^{-\beta \lambda _i/2}\,d\lambda _i\) and write the above as

$$\begin{aligned} f(x)=nC_{n,\alpha ,\beta }\, x^\alpha e^{-\beta n x/2} \int _0^\infty d\Omega _1\cdots \int _0^\infty d\Omega _{n-1}|\Delta _{n-1}(\{\lambda \})|^\beta \prod _{i=1}^{n-1}(\lambda _i+x)^\alpha .\nonumber \\ \end{aligned}$$
(A.3)

Following [22, 23], we now define

$$\begin{aligned} I_{i,j}^\alpha =\int _0^\infty d\Omega _1\cdots \int _0^\infty d\Omega _{n-1}\, |\Delta _{n-1}(\{\lambda \})|^\beta u(x), \end{aligned}$$
(A.4)

where

$$\begin{aligned} u(x)\equiv & {} \underbrace{(\lambda _1+x)^\alpha \cdots (\lambda _i+x)^\alpha }_{i \mathrm {~ terms~}}\underbrace{(\lambda _{i+1}+x)^{\alpha -1}\cdots (\lambda _{i+j}+x)^{\alpha -1}}_{j \mathrm { ~terms~}}\nonumber \\&\quad \times \underbrace{(\lambda _{i+j+1}+x)^{\alpha -2}\cdots (\lambda _n+x)^{\alpha -2}}_{n-i-j-1 \mathrm {~ terms~}}. \end{aligned}$$
(A.5)

We also consider the operator

$$\begin{aligned} I_{i,j}^\alpha [v]=\int _0^\infty d\Omega _1\cdots \int _0^\infty d\Omega _{n-1} \,|\Delta _{n-1}(\{\lambda \})|^\beta u(x)\,v. \end{aligned}$$
(A.6)

Using the above, the smallest eigenvalue density can be written using (A.4) as

$$\begin{aligned} f(x)=nC_{n,\alpha ,\beta } x^\alpha e^{-\beta nx/2}I_{n-1,0}^\alpha . \end{aligned}$$
(A.7)

Moreover, Lemma 4.2 of [22] (or, Lemma 4.1 of [23]) holds:

$$\begin{aligned} I_{i,j}^\alpha [\lambda _k]=\left\{ \begin{array}{cc} I_{i+1,j-1}^\alpha -x I_{i,j}^\alpha &{} \hbox { if }i<k\le i+j,\\ I_{i,j+1}^\alpha -x I_{i,j}^\alpha &{}\hbox { if }i+j< k< n. \end{array}\right. \end{aligned}$$
(A.8)

The above result is obtained by writing \(\lambda _k\) as \((\lambda _k+x)-x\) and then using the operator defined in (A.6). Now, if the terms \((\lambda _k+x)\) and \((\lambda _l+x)\) share the same exponent in the integrals (i.e., both k and l fall within one of the closed intervals \([1,i],[i+1,i+j]\), or \([i+j+1,n-1]\)), then

$$\begin{aligned} I_{i,j}^\alpha \left[ \frac{\lambda _k\lambda _l}{\lambda _k-\lambda _l}\right]= & {} 0, \end{aligned}$$
(A.9)
$$\begin{aligned} I_{i,j}^\alpha \left[ \frac{\lambda _k}{\lambda _k-\lambda _l}\right]= & {} \frac{1}{2}I_{i,j}^\alpha , \end{aligned}$$
(A.10)
$$\begin{aligned} I_{i,j}^\alpha \left[ \frac{\lambda _k^2}{\lambda _k-\lambda _l}\right]= & {} I_{i,j}^{\alpha }[\lambda _k]. \end{aligned}$$
(A.11)

Equation (A.9) is a consequence of the asymmetry in \(\lambda _k\) and \(\lambda _l\), while  (A.10) is obtained using the identity \(\lambda _k/(\lambda _k-\lambda _l)+\lambda _l/(\lambda _l-\lambda _k)=1\) and employing symmetry. Equation (A.11) follows with the aid of the identity \(\lambda _k^2/(\lambda _k-\lambda _l)=\lambda _k+\lambda _k\lambda _l/(\lambda _k-\lambda _l)\) and (A.9).

The generalization of the Lemma 4.3 of [22] (or Lemma 4.2 [23]) happens to be

$$\begin{aligned} I_{i,j}^\alpha= & {} \left( x+\frac{2\alpha }{\beta }+j+2k+2\right) \! I_{i-1,j+1}^\alpha \nonumber \\&-x\left( k+\frac{2(\alpha -1)}{\beta }\right) \! I_{i-1,j}^\alpha +(i-1)x I_{i-2,j+2}^\alpha \end{aligned}$$
(A.12)
$$\begin{aligned} I_{0,j}^\alpha= & {} I_{j,n-j-1}^{\alpha -1}, \end{aligned}$$
(A.13)

with \(k=n-i-j-1\). The definition (A.4) readily yields the second equation above, (A.13). The first equation of this set, (A.12), is derived using

$$\begin{aligned} I_{i,j}^\alpha =x I_{i-1,j+1}^\alpha +I_{i-1,j+1}^\alpha [\lambda _i], \end{aligned}$$
(A.14)

which is a consequence of (A.8). For the case of general \(\beta \), calculation of \(I_{i-1,j+1}^\alpha [\lambda _i]\) involves the follwing result:

$$\begin{aligned}&\int _0^\infty (\lambda _i+x)^{\alpha -1}\prod _{i<l}|\lambda _l-\lambda _i|^\beta \,\lambda _i^{\beta +1}\,e^{-\beta \lambda _i/2}\,d\lambda _i\nonumber \\&\quad =\frac{2}{\beta }\int _0^\infty \frac{d}{d\lambda _i} \bigg [(\lambda _i+x)^{\alpha -1}\prod _{i<l}|\lambda _l-\lambda _i|^\beta \,\lambda _i^{\beta +1}\bigg ]e^{-\beta \lambda _i/2}\,d\lambda _i. \end{aligned}$$
(A.15)

Next, using the result

$$\begin{aligned} \frac{dI_{i-1,j+1}^\alpha }{dx}=(i-1)\alpha I_{i-2,j+2}^\alpha +(j+1)(\alpha -1)I_{i-1,j}^\alpha \end{aligned}$$
(A.16)

for \(i+j=n-1\), we obtain (see Lemma 4.4, [22], or Lemma 4.3 [23])

$$\begin{aligned} I_{i,j}^\alpha= & {} \left( x+\frac{2\alpha }{\beta }+j+2\right) I_{i-1,j+1}^\alpha -\frac{2x}{\beta (j+1)}\frac{d}{dx}I_{i-1,j+1}^\alpha \nonumber \\&+x (i-1)\left( 1+\frac{2\alpha }{\beta (j+1)}\right) I_{i-2,j+2}^\alpha . \end{aligned}$$
(A.17)

For \(j=n-i-1\) this yields

$$\begin{aligned} I_{i,n-i-1}^\alpha= & {} \left( x+\frac{2\alpha }{\beta }+n-i+1\right) I_{i-1,n-i}^\alpha -\frac{2x}{\beta (n-i)}\frac{d}{dx}I_{i-1,n-i}^\alpha \nonumber \\&+x (i-1)\left( 1+\frac{2\alpha }{\beta (n-i)}\right) I_{i-2,n-i+1}^\alpha . \end{aligned}$$
(A.18)

We now consider \(I_{0,n-1}^\alpha \), which is same as \(I_{n-1,0}^{\alpha -1}\) in view of (A.13), and use (A.18) repeatedly for \(i=1\) to \(n-1\) to arrive at \(I_{n-1,0}^\alpha \). Therefore, we note that, starting from \(I_{n-1,0}^{\alpha -1}\) we can arrive at \(I_{n-1,0}^\alpha \), which is the term needed to obtain the smallest eigenvalue density expression (A.7) explicitly. This is essentially what we implement in the recursion involving \(S_i:= I_{i,n-i-1}^\alpha /I_{n-1,0}^0\) for \(g_{n,\alpha ,\beta }(x)\) in (10). We also observe that \(I_{n-1,0}^0=1/C_{n-1,\beta ,\beta }\), which gives the constant \(c_{n,\alpha ,\beta }\) of (10) as \(nC_{n,\alpha ,\beta }/C_{n-1,\beta ,\beta }\).

Appendix B: Proof of Equation (15)

For a non-negative integer \(\alpha \), using the Binomial theorem, we have

$$\begin{aligned} (\lambda _j+x)^\alpha =\sum _{k=0}^{\alpha }\left( {\begin{array}{c}\alpha \\ k\end{array}}\right) \lambda _j^{\alpha -k} x^k. \end{aligned}$$
(B.1)

We use this within the integral in (12). Now, since (10) already contain a factor \(x^\alpha \), the coefficient of \(x^r\) in this equation and hence in (13) is decided by the coefficient of \(x^{r-\alpha }\) in \(\prod _{j=1}^{n-1}\sum _{k=0}^{\alpha }\left( {\begin{array}{c}\alpha \\ k\end{array}}\right) \lambda _j^{\alpha -k} x^k\) which, when expanded, appears as

$$\begin{aligned}&\left( \left( {\begin{array}{c}\alpha \\ 0\end{array}}\right) \lambda _1^\alpha +\left( {\begin{array}{c}\alpha \\ 1\end{array}}\right) \lambda _1^{\alpha -1}x+\left( {\begin{array}{c}\alpha \\ 2\end{array}}\right) \lambda _1^{\alpha -2}x^2+\cdots +\left( {\begin{array}{c}\alpha \\ \alpha \end{array}}\right) x^\alpha \right) \\ \times&\left( \left( {\begin{array}{c}\alpha \\ 0\end{array}}\right) \lambda _2^\alpha +\left( {\begin{array}{c}\alpha \\ 1\end{array}}\right) \lambda _2^{\alpha -1}x+\left( {\begin{array}{c}\alpha \\ 2\end{array}}\right) \lambda _2^{\alpha -2}x^2+\cdots +\left( {\begin{array}{c}\alpha \\ \alpha \end{array}}\right) x^\alpha \right) \\&~~~~~~~~~~~~~~~~~~~~~~~~\vdots ~~~~~~~~~~~~~~~~~~~~~~~~\vdots \\&\times \left( \left( {\begin{array}{c}\alpha \\ 0\end{array}}\right) \lambda _{n-1}^\alpha +\left( {\begin{array}{c}\alpha \\ 1\end{array}}\right) \lambda _{n-1}^{\alpha -1}x+\left( {\begin{array}{c}\alpha \\ 2\end{array}}\right) \lambda _{n-1}^{\alpha -2}x^2+\cdots +\left( {\begin{array}{c}\alpha \\ \alpha \end{array}}\right) x^\alpha \right) . \end{aligned}$$

Clearly, the minimum and maximum powers of x possible in the above product are 0 and \((n-1)\alpha \), respectively. Therefore, \(r-\alpha \) varies from 0 to \((n-1)\alpha \), and any particular value assumed by it in this range has to be the resultant of the powers of x in the factors \((\left( {\begin{array}{c}\alpha \\ 0\end{array}}\right) \lambda _j^\alpha +\cdots +\left( {\begin{array}{c}\alpha \\ \alpha \end{array}}\right) x^\alpha )\); \(j=1,\ldots ,n-1\). As a result, we look for the partitions of \(r-\alpha \) using exactly \(n-1\) non-negative integers which are less than or equal to \(\alpha \), since the power of x varies from 0 to \(\alpha \). Moreover, the different orderings of the partition constituents correspond to the exchange of different \(\lambda \)’s. Since the multidimensional-integral in (12) is symmetric under the exchange of eigenvalues, we may focus on a particular ordering and multiply the resultant integral by the suitable combinatorial factor, which for a partition indexed by say \(\varphi \), out of 1 to L in (14), can be seen to be \((n-1)!/\prod _{k=1}^{l_\varphi }s_{\varphi ,k}!\). Furthermore, this factor appears with

$$\begin{aligned}&\left( {\begin{array}{c}\alpha \\ p_{\varphi ,k}\end{array}}\right) ^{s_{\varphi ,1}}\left( {\begin{array}{c}\alpha \\ p_{\varphi ,2}\end{array}}\right) ^{s_{\varphi ,2}}\cdots \left( {\begin{array}{c}\alpha \\ p_{\varphi ,l_\varphi }\end{array}}\right) ^{s_{\varphi ,l_\varphi }} x^{s_{\varphi ,1}p_{\varphi ,1}+s_{\varphi ,2}p_{\varphi ,2}+\cdots +s_{\varphi ,l_\varphi }p_{\varphi ,l_\varphi }}\\&\quad \times \lambda _1^{\alpha -\mathrm {p}_{j,1}}\lambda _2^{\alpha -\mathrm {p}_{j,1}}\ldots \lambda _{s_{j,1}}^{\alpha -\mathrm {p}_{j,1}} \lambda _{s_{j,1}+1}^{\alpha -\mathrm {p}_{j,2}}\ldots \lambda _{s_{j,2}}^{\alpha -\mathrm {p}_{j,2}} \ldots \lambda _{n-1}^{\alpha -\mathrm {p}_{l_j}}. \end{aligned}$$

The final result (15) therefore follows by summing the above over L distinct partitions of \(r-\alpha \) and applying the multidimensional-integral appearing in (12).

We consider an example to enunciate the above. Suppose \(n=5, \alpha =3, \beta =2\), and we are interested in finding the coefficient of \(x^r\) with \(r=7\). Then we look for the partition of \(7-3=4\) and find the unique partitions \(\{3,1,0,0\}, \{2,2,0,0\}, \{2,1,1,0\}, \{1,1,1,1\}\) up to ordering. Therefore, we have \(L=4\), and the following parameters:

$$\begin{aligned}&l_1=3: p_{1,1}=3, s_{1,1}=1; p_{1,2}=1, s_{1,2}=1; p_{1,3}=0, s_{1,3}=2,\\&l_2=2: p_{2,1}=2, s_{2,1}=2; p_{2,2}=0, s_{2,2}=2,\\&l_3=3: p_{3,1}=2, s_{3,1}=1; p_{3,2}=1, s_{1,2}=2; p_{3,3}=0, s_{3,3}=1,\\&l_4=1: p_{4,1}=1, s_{4,1}=4. \end{aligned}$$

Equation (15) then tells that the coefficient of \(x^7\) would be

$$\begin{aligned} \kappa _7= & {} 4!\,c_{5,3,2}\Bigg [\frac{\left( {\begin{array}{c}3\\ 3\end{array}}\right) ^1}{1!}\frac{\left( {\begin{array}{c}3\\ 1\end{array}}\right) ^1}{1!}\frac{\left( {\begin{array}{c}3\\ 0\end{array}}\right) ^2}{2!}\langle \lambda _1^0\lambda _2^2\lambda _3^3\lambda _4^3 \rangle _\Lambda +\frac{\left( {\begin{array}{c}3\\ 2\end{array}}\right) ^2}{2!}\frac{\left( {\begin{array}{c}3\\ 0\end{array}}\right) ^2}{2!}\langle \lambda _1^1\lambda _2^1\lambda _3^3\lambda _4^3 \rangle _\Lambda \\&+\frac{\left( {\begin{array}{c}3\\ 2\end{array}}\right) ^1}{1!}\frac{\left( {\begin{array}{c}3\\ 1\end{array}}\right) ^2}{2!}\frac{\left( {\begin{array}{c}3\\ 0\end{array}}\right) ^1}{1!}\langle \lambda _1^1\lambda _2^2\lambda _3^2\lambda _4^3 \rangle _\Lambda +\frac{\left( {\begin{array}{c}3\\ 1\end{array}}\right) ^4}{4!}\langle \lambda _1^2\lambda _2^2\lambda _3^2\lambda _4^2 \rangle _\Lambda \Bigg ]. \end{aligned}$$

We find that \(\langle \lambda _1^0\lambda _2^2\lambda _3^3\lambda _4^3 \rangle _\Lambda =3175200\), \(\langle \lambda _1^1\lambda _2^1\lambda _3^3\lambda _4^3 \rangle _\Lambda =1360800\), \(\langle \lambda _1^1\lambda _2^2\lambda _3^2\lambda _4^3 \rangle _\Lambda =680400\), \(\langle \lambda _1^2\lambda _2^2\lambda _3^2\lambda _4^2 \rangle _\Lambda =302400,\) which gives \(\kappa _7=159/16\). This agrees with the coefficient of \(x^7\) extracted after applying the recursion, as it should.

Appendix C: Mathematica Codes

The following code can be implemented in Mathematica [72] to obtain exact expressions for the smallest eigenvalue density for the unrestricted \(\beta \)-Wishart–Laguerre ensemble:

figure a

For generating the smallest eigenvalue density for unit-trace \(\beta \)-Wishart–Laguerre ensemble, the following code can be used along with the above.

figure b

Subsequently, the following codes can be used to obtain the moments:

figure c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S. Recursion for the Smallest Eigenvalue Density of \(\beta \)-Wishart–Laguerre Ensemble. J Stat Phys 175, 126–149 (2019). https://doi.org/10.1007/s10955-019-02245-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-019-02245-z

Keywords

Navigation