Skip to main content
Log in

Inhomogeneous Generalization of a Multispecies Totally Asymmetric Zero Range Process

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The n-species totally asymmetric zero range process (n-TAZRP) on a one-dimensional periodic chain studied recently by the authors is a continuous time Markov process where arbitrary number of particles can occupy the same sites and hop to the adjacent sites only in one direction with a priority constraint according to their species. In this paper we introduce an n-parameter generalization of the n-TAZRP having inhomogeneous transition rate. The steady state probability is obtained in a matrix product form and also by an algorithm related to combinatorial R.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The enumeration of particles is reversed from [16] where the smaller species ones had the priority.

  2. Here and in what follows, a multiset (set accounting for multiplicity of elements), say \(\{1,1,3,5,6\}\), is abbreviated to 11356, which does not cause a confusion since all the examples in this paper shall be concerned with the case \(n\le 9\).

  3. That such a choice is possible will be shown by Theorem 3.1 and Lemma 3.2.

  4. We write \(A_{(\mu ),(\alpha ^1,\alpha ^2)}\) for example simply as \(A_{\mu ,\alpha ^1\alpha ^2}\).

  5. The convention of labeling the particle species here is opposite from [16] causing many changes.

  6. The notation \(\Phi _{\mathbf{x}^a}\) is slightly incomplete in that the a-dependence becomes invisible when \(\mathbf{x}^a\) is written generally as \(\mathbf{y}\) for example. However we prefer it for simplicity. A proper alternative is to formulate it as a map \(S(m_1,\ldots , m_{a-1})\times B_{\ell _a}\; \longrightarrow S(m_1,\ldots , m_a)\). A similar caution applies to \(\varpi _{\mathbf{x}^a}\).

  7. This is an abbreviation of \((\emptyset , \{1,3\}, \{2\}, \{3\}, \emptyset , \{1,2\}, \{1,1\})\) as in Example 2.1.

  8. The arbitrariness of the choice does not spoil the well-definedness. See Remark 4.2 (i).

  9. Hence every line starts from a particle with the shape \(\lceil \) rather than \(\rfloor \).

  10. Possible incoming H-lines originating from the NE neighbor box have not been drawn here for simplicity but are included in the argument.

References

  1. Andjel, E.D.: Invariant measures for the zero range process. Ann. Probability 10, 525–547 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ayyer, A., Linusson, S.: An inhomogeneous multispecies TASEP on a ring. Adv. Appl. Math. 57, 21–43 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arita, C., Kuniba, A., Sakai, K., Sawabe, T.: Spectrum in multi-species asymmetric simple exclusion process on a ring. J. Phys. A 42, 345002 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Arita, C., Mallick, K.: Matrix product solution to an inhomogeneous multi-species TASEP. J. Phys. A 46, 085002 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Baxter, R.J.: Exactly solved models in statistical mechanics. Dover, London (2007)

    MATH  Google Scholar 

  6. Drinfeld, V.G..: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2, pp. 798–820. (Berkeley, Calif., 1986), Amer. Math. Soc., Providence (1987)

  7. Evans, M.R., Hanney, T.: Nonequilibrium statistical mechanics of the zero-range process and related models. J. Phys. A 38, R195–R240 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ferrari, P.A., Martin, J.B.: Stationary distributions of multi-type totally asymmetric exclusion processes. Ann. Probability 35, 807–832 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Großkinsky, S., Schütz, G.M., Spohn, H.: Condensation in the zero range process: stationary and dynamical properties. J. Stat. Phys. 113, 389–410 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jimbo, M.: A \(q\)-difference analogue of \(U({\mathfrak{g}})\) and the Yang–Baxter equation. Lett. Math. Phys. 10, 63–69 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Kashiwara, M.: On crystal bases of \(q\)-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kipnis, C., Landim, C.: Scaling limits of interacting particle systems, Grundlehren der mathematischen. Springer, Heidelberg (1999)

    Book  MATH  Google Scholar 

  13. Kuniba, A., Okado, M., Sakamoto, R., Takagi, T., Yamada, Y.: Crystal interpretation of Kerov–Kirillov–Reshetikhin bijection. Nucl. Phys. B 740, 299–327 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kuniba, A., Maruyama, S., Okado, M.: Multispecies TASEP and combinatorial R. J. Phys. A 48, 34FT02 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kuniba, A., Maruyama, S., Okado, M.: Multispecies TASEP and the tetrahedron equation. J. Phys. A 49, 114001 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  16. Kuniba, A., Maruyama, S., Okado, M.: Multispecies totally asymmetric zero range process: I. Multiline process and combinatorial \(R\). J. Integrable systems. arXiv:1511.09168

  17. Kuniba, A., Maruyama, S. Okado, M.: Multispecies totally asymmetric zero range process: II. Hat relation and tetrahedron equation, in preparation

  18. Kuniba, A., Okado, M., Sergeev, S.: Tetrahedron equation and generalized quantum groups. J. Phys. A 48, 304001 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lam, T., Williams, L.: A Markov chain on the symmetric group which is Schubert positive? arXiv:1102.4406

  20. Nakayashiki, A., Yamada, Y.: Kostka polynomials and energy functions in solvable lattice models. Selecta Mathematica New Ser. 3, 547–599 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Prolhac, S., Evans, M.R., Mallick, K.: The matrix product solution of the multispecies partially asymmetric exclusion process. J. Phys. A 42, 165004 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Spitzer, F.: Interaction of Markov processes. Adv. Math. 5, 246–290 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  23. Tracy, C.A., Widom, H.: On the asymmetric simple exclusion process with multiple species. J. Stat. Phys. 150, 457–470 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Zamolodchikov, A.B.: Tetrahedra equations and integrable systems in three-dimensional space. Soviet Phys. JETP 79, 641–664 (1980)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is supported by Grants-in-Aid for Scientific Research No. 15K04892, No. 15K13429 and No. 23340007 from JSPS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Kuniba.

Appendix

Appendix

Let us show the equality of the coefficients of \(w_n^3\) in (3.7). In the left hand side, it is given by

$$\begin{aligned} \sum _{\bar{\gamma },\,\gamma _n\ge 0}&\theta ({\bar{\alpha }}={\bar{\gamma }},\alpha _n>\gamma _n)P_+(\mu )K_nP_-({\bar{\alpha }})P_+(\nu )K_nP_-({\bar{\beta }})-\beta _nP_+(\mu )K_nP_-({\bar{\alpha }})P_+(\nu )K_nP_-({\bar{\beta }}) \\&=(\alpha _n-\beta _n)P_+(\mu )K_nP_-({\bar{\alpha }}) P_+(\nu )K_nP_-({\bar{\beta }}), \end{aligned}$$

where we used \({\bar{\alpha }}={\bar{\gamma }} \iff {\bar{\beta }}={\bar{\delta }}\) due to the conservation law. In the right hand side of (3.7), the coefficient of \(w_n^3\) is

$$\begin{aligned} (1+\alpha _n)P_+(\mu )K_nP_-({\bar{\alpha }})P_+(\nu )K_nP_-({\bar{\beta }})-(1+\beta _n)P_+(\mu )K_nP_-({\bar{\alpha }})P_+(\nu )K_nP_-({\bar{\beta }}), \end{aligned}$$

coinciding with the above.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuniba, A., Maruyama, S. & Okado, M. Inhomogeneous Generalization of a Multispecies Totally Asymmetric Zero Range Process. J Stat Phys 164, 952–968 (2016). https://doi.org/10.1007/s10955-016-1555-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-016-1555-3

Keywords

Navigation