Skip to main content
Log in

The Average Field Approximation for Almost Bosonic Extended Anyons

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Anyons are 2D or 1D quantum particles with intermediate statistics, interpolating between bosons and fermions. We study the ground state of a large number N of 2D anyons, in a scaling limit where the statistics parameter \(\alpha \) is proportional to \(N ^{-1}\) when \(N\rightarrow \infty \). This means that the statistics is seen as a “perturbation from the bosonic end”. We model this situation in the magnetic gauge picture by bosons interacting through long-range magnetic potentials. We assume that these effective statistical gauge potentials are generated by magnetic charges carried by each particle, smeared over discs of radius R (extended anyons). Our method allows to take \(R\rightarrow 0\) not too fast at the same time as \(N\rightarrow \infty \). In this limit we rigorously justify the so-called “average field approximation”: the particles behave like independent, identically distributed bosons interacting via a self-consistent magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For increased clarity we will in this work separate \(\alpha \) from \(\mathbf {A}\), so that \(\mathbf {A}\) corresponds to the statistical vector potential of fermions modeled as bosons.

  2. By the boundedness of \(\nabla w_R\) and using Cauchy–Schwarz, all terms are infinitesimally form-bounded in terms of \(H_N(\alpha =0)\) and hence \(H_N^R\) is a uniquely defined self-adjoint operator by the KLMN theorem [45, Theorem X.17]. We shall assume V is such that a form core is given by \(C_c^\infty (\mathbb {R}^2)\).

  3. Note that by Young’s inequality we have for any \(u \in L^2(\mathbb {R}^2)\) that \(\mathbf {A}[|u|^2] \in L^p(\mathbb {R}^2) + \varepsilon L^\infty (\mathbb {R}^2)\) for \(p \in [1,2)\). Also compare to the singular magnetic fields considered in [12, 36].

References

  1. Arovas, D., Schrieffer, J., Wilczek, F.: Fractional statistics and the quantum Hall effect. Phys. Rev. Lett. 53, 722–723 (1984)

    Article  ADS  Google Scholar 

  2. Bhatia, R.: Matrix Analysis, vol. 169. Springer, Berlin (1997)

    MATH  Google Scholar 

  3. Chen, X., Smith, P.: On the unconditional uniqueness of solutions to the infinite radial Chern–Simons–Schrödinger hierarchy. Anal. PDE 7, 1683–1712 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chen, Y.H., Wilczek, F., Witten, E., Halperin, B.I.: On anyon superconductivity. Int. J. Mod. Phys. B 3, 1001–1067 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  5. Chiribella, G.: On quantum estimation, quantum cloning and finite quantum de Finetti theorems. Theory of Quantum Computation, Communication, and Cryptography. Lecture Notes in Computer Science, vol. 6519. Springer, Berlin (2011)

    Google Scholar 

  6. Chitra, R., Sen, D.: Ground state of many anyons in a harmonic potential. Phys. Rev. B 46, 10923–10930 (1992)

    Article  ADS  Google Scholar 

  7. Choi, M.Y., Lee, C., Lee, J.: Soluble many-body systems with flux-tube interactions in an arbitrary external magnetic field. Phys. Rev. B 46, 1489–1497 (1992)

    Article  ADS  Google Scholar 

  8. Christandl, M., König, R., Mitchison, G., Renner, R.: One-and-a-half quantum de Finetti theorems. Commun. Math. Phys. 273(2), 473–498 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Comtet, A., McCabe, J., Ouvry, S.: Perturbative equation of state for a gas of anyons. Phys. Lett. B 260, 372–376 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  10. Comtet, A., Mashkevich, S., Ouvry, S.: Magnetic moment and perturbation theory with singular magnetic fields. Phys. Rev. D 52, 2594–2597 (1995)

    Article  ADS  Google Scholar 

  11. Correggi, M., Pinsker, F., Rougerie, N., Yngvason, J.: Critical rotational speeds for superfluids in homogeneous traps. J. Math. Phys. 53, 095203 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Erdős, L., Vougalter, V.: Pauli operator and Aharonov–Casher theorem for measure valued magnetic fields. Commun. Math. Phys. 225, 399–421 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  13. Fetter, A.L., Hanna, C.B., Laughlin, R.B.: Random-phase approximation in the fractional-statistics gas. Phys. Rev. B 39, 9679–9681 (1989)

    Article  ADS  Google Scholar 

  14. Fournais, S., Helffer, B.: Spectral methods in surface superconductivity. Progress in Nonlinear Differential Equations and their Applications, vol. 77. Birkhäuser Boston Inc., Boston (2010)

    MATH  Google Scholar 

  15. Fröhlich, J.: Quantum statistics and locality. In: Proceedings of the Gibbs Symposium (New Haven, 1989), pp. 89–142. American Mathematical Society, Providence (1990)

  16. Goerbig, M.O.: Quantum Hall effects (2009).arXiv:0909.1998

  17. Harrow, A.: The church of the symmetric subspace (2013). arXiv:1308.6595

  18. Hoffmann-Ostenhof, M., Hoffmann-Ostenhof, T., Laptev, A., Tidblom, J.: Many-particle Hardy Inequalities. J. Lond. Math. Soc. 77, 99–114 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iengo, R., Lechner, K.: Anyon quantum mechanics and Chern–Simons theory. Phys. Rep. 213, 179–269 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  20. Khare, A.: Fractional Statistics and Quantum Theory, 2nd edn. World Scientific, Singapore (2005)

    Book  MATH  Google Scholar 

  21. Kinoshita, T., Wenger, T., Weiss, D.S.: Observation of a one-dimensional Tonks–Girardeau gas. Science 305, 1125–1128 (2004)

    Article  ADS  Google Scholar 

  22. Laughlin, R.B.: Nobel lecture: fractional quantization. Rev. Mod. Phys. 71, 863–874 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Lerda, A.: Anyons. Springer, Berlin (1992)

    MATH  Google Scholar 

  24. Lewin, M.: Geometric methods for nonlinear many-body quantum systems. J. Funct. Anal. 260, 3535–3595 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lewin, M., Nam, P.T., Rougerie, N.: Derivation of Hartree’s theory for generic mean-field Bose systems. Adv. Math. 254, 570–621 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lewin, M., Nam, P. T., Rougerie, N.: The mean-field approximation and the non-linear Schrödinger functional for trapped Bose gases (2014).arXiv:1405.3220

  27. Lewin, M., Nam, P.T., Rougerie, N.: Remarks on the quantum de Finetti theorem for bosonic systems. Appl. Math. Res. Express 1, 48–63 (2014)

    MATH  MathSciNet  Google Scholar 

  28. Lieb, E.H., Liniger, W.: Exact analysis of an interacting Bose gas. I. The general solution and the ground state. Phys. Rev. 130(2), 1605–1616 (1963)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Lieb, E.H., Loss, M.: Analysis. Graduate Studies in Mathematics, vol. 14, 2nd edn. American Mathematical Society, Providence (2001)

    MATH  Google Scholar 

  30. Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264(2), 505–537 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  31. Lieb, E.H., Seiringer, R., Solovej, J.P., Yngvason, J.: The Mathematics of the Bose Gas and Its Condensation. Oberwolfach Seminars. Birkhäuser, Basel (2005)

    MATH  Google Scholar 

  32. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61(4), 043602 (2000)

    Article  ADS  Google Scholar 

  33. Lundholm, D.: Geometric extensions of many-particle Hardy inequalities. J. Phys. A 48, 175203 (2015)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  34. Lundholm, D., Solovej, J.P.: Hardy and Lieb-Thirring inequalities for anyons. Commun. Math. Phys. 322, 883–908 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Lundholm, D., Solovej, J.P.: Local exclusion principle for identical particles obeying intermediate and fractional statistics. Phys. Rev. A 88, 062106 (2013)

    Article  ADS  Google Scholar 

  36. Lundholm, D., Solovej, J.P.: Local exclusion and Lieb-Thirring inequalities for intermediate and fractional statistics. Ann. Henri Poincaré 15, 1061–1107 (2014)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Lundholm, D., Svensson, L.: Clifford algebra, geometric algebra, and applications, KTH (2009). arXiv:0907.5356

  38. Mashkevich, S.: Finite-size anyons and perturbation theory. Phys. Rev. D 54, 6537–6543 (1996)

    Article  ADS  Google Scholar 

  39. Myrheim, J.A.: Aspects topologiques de la physique en basse dimension. Topological aspects of low dimensional systems. In: Comtet, A., Jolicœur, T., Ouvry, S., David, F. (eds.) Les Houches–Ecole d’Ete de Physique Theorique, vol. 69, pp. 265–413. Springer, Berlin (1999)

    Google Scholar 

  40. Nam, P. T., Rougerie, N., Seiringer, R.: Ground states of large Bose systems: the Gross–Pitaevskii limit revisited (2015). arXiv:1503.07061

  41. Ouvry, S.: \(\delta \)-Perturbative interactions in the Aharonov–Bohm and anyons models. Phys. Rev. D 50, 5296–5299 (1994)

    Article  ADS  Google Scholar 

  42. Ouvry, S.: Anyons and lowest Landau level anyons. Sémin. Poincaré 11, 77–107 (2007)

    MATH  Google Scholar 

  43. Paredes, B., et al.: Tonks–Girardeau gas of ultracold atoms in an optical lattice. Nature 429, 277–281 (2004)

    Article  ADS  Google Scholar 

  44. Reed, M., Simon, B.: Methods of Modern Mathematical Physics I. Functional analysis. Academic Press, New York (1972)

    MATH  Google Scholar 

  45. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-adjointness. Academic Press, New York (1975)

    MATH  Google Scholar 

  46. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. IV. Analysis of Operators. Academic Press, New York (1978)

    MATH  Google Scholar 

  47. Rougerie, N.: De Finetti Theorems, Mean-Field Limits and Bose–Einstein Condensation. Lecture Notes (2015)

  48. Sen, D.: Quantum and statistical mechanics of anyons. Nuclear Phys. B 630, 397–408 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  49. Sen, D., Chitra, R.: Anyons as perturbed bosons. Phys. Rev. B 45, 881–894 (1992)

    Article  ADS  Google Scholar 

  50. Trugenberger, C.: Ground state and collective excitations of extended anyons. Phys. Lett. B 288, 121–128 (1992)

    Article  ADS  Google Scholar 

  51. Trugenberger, C.: The anyon fluid in the Bogoliubov approximation. Phys. Rev. D 45, 3807–3817 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  52. Westerberg, E.: Mean field approximation for anyons in a magnetic field. Int. J. Mod. Phys. B 7, 2177–2199 (1993)

    Article  ADS  Google Scholar 

  53. Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore (1990)

    Book  MATH  Google Scholar 

  54. Zhang, S.C.: The Chern–Simons–Landau–Ginzburg theory of the fractional quantum Hall effect. Int. J. Mod. Phys. B 6, 25–58 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  55. Zhang, S.C., Hansson, T.H., Kivelson, S.: Effective-field-theory model for the fractional quantum Hall effect. Phys. Rev. Lett. 62, 82–85 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We thank Michele Correggi for discussions. Part of this work has been carried out during visits at the Institut Henri Poincaré (Paris) and the Institut Mittag-Leffler (Stockholm). D. L. would also like to thank LPMMC Grenoble for kind hospitality. We acknowledge financial support from the French ANR (Project Mathosaq ANR-13-JS01-0005-01), as well as the grant KAW 2010.0063 from the Knut and Alice Wallenberg Foundation and the Swedish Research Council Grant No. 2013-4734.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Rougerie.

Appendix: Properties of the Average-Field Functional

Appendix: Properties of the Average-Field Functional

In this appendix we establish some of the fundamental properties of the functional (1.10) and its limit \(R \rightarrow 0\).

For \(\beta \in \mathbb {R}\) and \(V: \mathbb {R}^2 \rightarrow \mathbb {R}^+\) we define the average-field energy functional

$$\begin{aligned} \mathcal {E}^{\mathrm {af}}[u] := \int _{\mathbb {R}^2} \left( \left| \left( \nabla + i \beta \mathbf {A}[|u|^2] \right) u \right| ^2 + V|u|^2 \right) , \end{aligned}$$
(3.28)

with the self-generated magnetic potential

$$\begin{aligned} \mathbf {A}[\rho ] := \nabla ^{\perp }w_0 * \rho = \int _{\mathbb {R}^2} \frac{(x-y)^\perp }{|x-y|^2} \rho (y) \,dy, \qquad \mathrm {curl}\,\mathbf {A}[\rho ] = 2\pi \rho . \end{aligned}$$

The functional is certainly well-defined for \(u \in C_c^\infty (\mathbb {R}^2)\), but we should ask what its natural domain is. We then have to make a meaning of \(\mathcal {E}^{\mathrm {af}}[u]\) for general \(u \in L^2(\mathbb {R}^2)\) and the problem is that it is not certain that \(\mathbf {A}[|u|^2] \in L^2_{{{\mathrm{loc}}}}\) even though \(u \in L^2\) (see [12] for an exampleFootnote 3), so the product \(\mathbf {A}[|u|^2]u\) may not be well-defined as a distribution (while \(\nabla u\) certainly is). One way around this is to reconsider the form of the functional when acting on regular enough functions such that we can write \(u = |u|e^{i\varphi }\) where \(\varphi \) is real. Then

$$\begin{aligned} \left| (\nabla + i\beta \mathbf {A}[|u|^2])u \right| ^2= & {} \left| \nabla |u| + i|u|(\nabla \varphi + \beta \mathbf {A}[|u|^2]) \right| ^2 \\= & {} \left| \nabla |u| \right| ^2 + \left| |u|\nabla \varphi + \beta \mathbf {A}[|u|^2]|u| \right| ^2, \end{aligned}$$

where also \(\nabla \varphi = |u|^{-2}\mathfrak {I}\bar{u}\nabla u\) and \(\nabla |u| = |u|^{-1}\mathfrak {R}\bar{u}\nabla u\). Hence, an alternative definition is given by

$$\begin{aligned} \mathcal {E}^{\mathrm {af}}[u] := \int _{\mathbb {R}^2} \left( \left| \nabla |u| \right| ^2 + \left| \mathfrak {I}\frac{\bar{u}}{|u|}\nabla u + \beta \mathbf {A}[|u|^2]|u| \right| ^2 + V|u|^2 \right) , \end{aligned}$$
(3.29)

and the advantage of this formulation is that it makes clear that we actually demand \(|u| \in H^1(\mathbb {R}^2)\) in order for \(\mathcal {E}^{\mathrm {af}}[u] < \infty \). We can then use the following lemma to see that in fact \(\mathbf {A}[|u|^2]u \in L^2(\mathbb {R}^2)\), and hence also \(\nabla u \in L^2(\mathbb {R}^2)\). (And conversely this also shows that if \(\mathbf {A}[|u|^2]u \notin L^2(\mathbb {R}^2)\) then we have no chance of making sense out of \(\mathcal {E}^{\mathrm {af}}[u]\).)

Lemma 3.4

(Bound on the magnetic term) We have for any \(u \in L^2(\mathbb {R}^2)\) that

$$\begin{aligned} \int _{\mathbb {R}^2} \left| \mathbf {A}[|u|^2] \right| ^2 |u|^2 \le \frac{3}{2} \Vert u\Vert _{L^2(\mathbb {R}^2)}^4 \int _{\mathbb {R}^2} \left| \nabla |u| \right| ^2. \end{aligned}$$

Proof

This follows from symmetry and from the three-body Hardy inequality of Lemma 2.5:

$$\begin{aligned}&\int _{\mathbb {R}^2} \left| \mathbf {A}[|u|^2](x) \right| ^2 |u(x)|^2 \,dx \\&\quad =\int \!\!\int \!\!\int _{\mathbb {R}^6} \frac{x-y}{|x-y|^2} \cdot \frac{x-z}{|x-z|^2} |u(x)|^2 |u(y)|^2 |u(z)|^2 \,dxdydz \\&\quad = \frac{1}{6} \int _{\mathbb {R}^6} \frac{1}{\mathcal {R}(X)^2} \left| |u|^{\otimes 3} \right| ^2 dX \le \frac{1}{2} \int _{\mathbb {R}^6} \left| \nabla _X |u|^{\otimes 3} \right| ^2 dX = \frac{3}{2} \int _{\mathbb {R}^2} \left| \nabla |u| \right| ^2 dx \left( \int _{\mathbb {R}^2} |u|^2 dx \right) ^2. \end{aligned}$$

\(\square \)

We can therefore define the domain of \(\mathcal {E}^{\mathrm {af}}\) to be (and otherwise let \(\mathcal {E}^{\mathrm {af}}[u] := +\infty \))

$$\begin{aligned} \mathscr {D}^{\mathrm {af}}:= \left\{ u \in H^1(\mathbb {R}^2) : \int _{\mathbb {R}^2} V|u|^2 < \infty \right\} , \end{aligned}$$

and we find using Cauchy-Schwarz, Lemma 3.4, and \(|\nabla |u|| \le |\nabla u|\) that for \(u \in \mathscr {D}^{\mathrm {af}}\)

$$\begin{aligned} 0\le & {} \mathcal {E}^{\mathrm {af}}[u] \le 2 \Vert \nabla u\Vert ^2 + 2\beta ^2 \Vert \mathbf {A}[|u|^2] u \Vert ^2 + \int V|u|^2 \le (2 + 3\beta ^2 \Vert u\Vert ^4) \Vert \nabla u\Vert ^2 \\&+ \int V|u|^2 < \infty . \end{aligned}$$

The ground-state energy of the average-field functional is then given by

$$\begin{aligned} E ^{\mathrm {af}}:= \inf \left\{ \mathcal {E}^{\mathrm {af}}[u] : u \in \mathscr {D}^{\mathrm {af}}, \int _{\mathbb {R}^2} |u|^2 = 1 \right\} . \end{aligned}$$

For convenience we also make the assumption on V that \(V(x) \rightarrow +\infty \) as \(|x| \rightarrow \infty \) and that \(C_c^\infty (\mathbb {R}^2) \subseteq \mathscr {D}^{\mathrm {af}}\) is a form core for \(\left||u \right||_{L^2_V}^2 := \int _{\mathbb {R}^2} V|u|^2\), with \(-\Delta + V\) essentially self-adjoint and with purely discrete spectrum (see, e.g., [46, Theorem XIII.67]). This is then also a core for \(\mathcal {E}^{\mathrm {af}}\):

Proposition 3.5

(Density of regular functions in the form domain) \(C_c^\infty (\mathbb {R}^2)\) is dense in \(\mathscr {D}^{\mathrm {af}}\) w.r.t. \(\mathcal {E}^{\mathrm {af}}\), namely for any \(u \in \mathscr {D}^{\mathrm {af}}\) there exists a sequence \((u_n)_{n \rightarrow \infty } \subset C_c^\infty (\mathbb {R}^2)\) such that

$$\begin{aligned} \Vert u-u_n\Vert _{H^1} \rightarrow 0 \text{ and } \mathcal {E}^{\mathrm {af}}[u_n] \rightarrow \mathcal {E}^{\mathrm {af}}[u] \text{ as } n \rightarrow \infty . \end{aligned}$$

Proof

Take \(u \in \mathscr {D}^{\mathrm {af}}\), then \(\Vert \nabla u\Vert _{L^2} < \infty \) and hence also \(\Vert u\Vert _{L^p} < \infty \) for any \(p \in [2,\infty )\) by Sobolev embedding. We use that \(C_c^\infty (\mathbb {R}^2)\) is dense in \(H^1(\mathbb {R}^2)\), so there exists a sequence \((u_n)_{n \rightarrow \infty } \subset C_c^\infty \) s.t. \(\Vert u-u_n\Vert _{H^1} \rightarrow 0\). Also,

$$\begin{aligned}&\left| \left|| (\nabla + i\beta \mathbf {A}[|u|^2])u \right||_2 - \left|| (\nabla + i\beta \mathbf {A}[|u_n|^2])u_n \right||_2 \right| \\&\quad \le \left|| (\nabla + i\beta \mathbf {A}[|u|^2])u - (\nabla + i\beta \mathbf {A}[|u_n|^2])u_n \right||_2 \\&\quad \le \left|| \nabla (u-u_n) \right||_2 + |\beta | \Vert (\mathbf {A}[|u|^2] - \mathbf {A}[|u_n|^2])u + \mathbf {A}[|u_n|^2](u-u_n) \Vert _2 \\&\quad \le \left||u-u_n \right||_{H^1} + |\beta | \left|| \mathbf {A}[|u|^2-|u_n|^2] u \right||_2 + |\beta |\left|| \mathbf {A}[|u_n|^2](u-u_n) \right||_2, \end{aligned}$$

where by Hölder’s and generalized Young’s inequalities

$$\begin{aligned}&\left||\mathbf {A}[|u|^2-|u_n|^2] u \right||_2 \le \left||\mathbf {A}[|u|^2-|u_n|^2] \right||_{4} \left||u \right||_{4} \le C \left|||u|^2-|u_n|^2 \right||_{4/3} \left||\nabla w_0 \right||_{2,w} \left||u \right||_4 \\&\quad \le C' \left||u-u_n \right||_{8/3} \le C'' \left||u-u_n \right||_{H^1} \rightarrow 0, \end{aligned}$$

and similarly

$$\begin{aligned} \left||\mathbf {A}[|u_n|^2](u-u_n) \right||_2 \le C\left||u-u_n \right||_{H^1} \rightarrow 0, \end{aligned}$$

as \(n \rightarrow \infty \).

We also have continuity for \(\left||u \right||_{L^2_V} \) here since we assumed that \(C_c^\infty (\mathbb {R}^2)\) is a form core. \(\square \)

Lemma 3.6

(Basic magnetic inequalities) We have for \(u \in \mathscr {D}^{\mathrm {af}}\) that (diamagnetic inequality)

$$\begin{aligned} \int _{\mathbb {R}^2} \left| (\nabla + i\beta \mathbf {A}[|u|^2])u \right| ^2 \ge \int _{\mathbb {R}^2} \left| \nabla |u| \right| ^2, \end{aligned}$$
(3.30)

and

$$\begin{aligned} \int _{\mathbb {R}^2} \left| (\nabla + i\beta \mathbf {A}[|u|^2])u \right| ^2 \ge 2\pi |\beta | \int _{\mathbb {R}^2} |u|^4. \end{aligned}$$
(3.31)

Proof

By density we can w.l.o.g. assume \(u \in C_c^\infty (\mathbb {R}^2)\). We then have \(\mathbf {A}[|u|^2] \in C^\infty (\mathbb {R}^2) \subseteq L^2_{{{\mathrm{loc}}}}(\mathbb {R}^2)\) and hence the first inequality follows by the usual diamagnetic inequality (see e.g. Theorem 2.1.1 in [14]). Furthermore, by e.g. Lemma 1.4.1 in [14],

$$\begin{aligned} \int _{\mathbb {R}^2} \left| (\nabla + i\beta \mathbf {A}[|u|^2])u \right| ^2 \ge \pm \int _{\mathbb {R}^2} \mathrm {curl}\left( \beta \mathbf {A}[|u|^2] \right) |u|^2, \end{aligned}$$

which proves the second inequality since \(\mathrm {curl}\mathbf {A}[|u|^2] = 2\pi |u|^2\). Instead of using density we could also have used the formulation (3.29) or the fact that \(u \in H^1 \Rightarrow \mathbf {A}[|u|^2] \in L^p\), \(p \in (2,\infty )\) by generalized Young. \(\square \)

Proposition 3.7

(Existence of minimizers) For any value of \(\beta \in \mathbb {R}\) there exists \(u ^{\mathrm {af}}\in \mathscr {D}^{\mathrm {af}}\) with \(\int _{\mathbb {R}^2} |u ^{\mathrm {af}}|^2 = 1\) and \(\mathcal {E}^{\mathrm {af}}[u ^{\mathrm {af}}] = E ^{\mathrm {af}}\).

Proof

First note that for \(u \in \mathscr {D}^{\mathrm {af}}\), by Lemma 3.4 and Lemma 3.6,

$$\begin{aligned} \left||\nabla u \right||_2&= \left||\nabla u + i\beta \mathbf {A}[|u|^2] u - i\beta \mathbf {A}[|u|^2] u \right|| _2 \le \mathcal {E}^{\mathrm {af}}[u]^{1/2} + |\beta | \left||\mathbf {A}[|u|^2]u \right||_2 \\&\le \mathcal {E}^{\mathrm {af}}[u]^{1/2} + |\beta | \sqrt{\frac{3}{2}} \left||u \right||_2^2 \left||\nabla |u| \right||_2 \le \left( 1 + |\beta | \sqrt{\frac{3}{2}} \left||u \right||_2^2 \right) \mathcal {E}^{\mathrm {af}}[u]^{1/2}. \end{aligned}$$

Now take a minimizing sequence

$$\begin{aligned} (u_n)_{n \rightarrow \infty } \subset \mathscr {D}^{\mathrm {af}},\, \left||u_n \right||_2 = 1,\, \lim _{n \rightarrow \infty } \mathcal {E}^{\mathrm {af}}[u_n] = E ^{\mathrm {af}}. \end{aligned}$$

Then clearly \((u_n)\) is uniformly bounded in both \(L^2(\mathbb {R}^2)\), \(L^2_V\), and \(H^1(\mathbb {R}^2)\) (and hence in \(L^p(\mathbb {R}^2)\), \(p \in [2,\infty )\)), and therefore by the Banach–Alaoglu theorem there exists \(u ^{\mathrm {af}}\in \mathscr {D}^{\mathrm {af}}\) and a weakly convergent subsequence (still denoted \(u_n\)) such that

$$\begin{aligned} u_n \rightharpoonup u ^{\mathrm {af}}\ \text {in} \ L^2(\mathbb {R}^2) \cap L^2_V \cap L^p(\mathbb {R}^2), \quad \nabla u_n \rightharpoonup \nabla u ^{\mathrm {af}}\ \text {in} \ L^2(\mathbb {R}^2). \end{aligned}$$

Moreover, since \((-\Delta + V + 1)^{-1/2}\) is compact we have that

$$\begin{aligned} u_n = (-\Delta +V + 1)^{-1/2}(-\Delta +V + 1)^{1/2}u_n \end{aligned}$$

is actually strongly convergent (again extracting a subsequence), hence

$$\begin{aligned} u_n \rightarrow u ^{\mathrm {af}} \text{ in } L^2(\mathbb {R}^2). \end{aligned}$$

Also, \(\mathbf {A}[|u_n|]\) converges pointwise a.e. to \(\mathbf {A}[|u|^2]\) by weak convergence of \(u_n\) in \(L^p\) and, by the trick of Lemma 3.4,

$$\begin{aligned} \left||\mathbf {A}[|u_n|^2]u_n \right||_2^2= & {} \frac{1}{6} \int _{\mathbb {R}^6} \mathcal {R}(X)^{-2} \left| |u_n|^{\otimes 3} \right| ^2 dX \rightarrow \frac{1}{6} \int _{\mathbb {R}^6} \mathcal {R}(X)^{-2} \left| |u|^{\otimes 3} \right| ^2 dX \\= & {} \left||\mathbf {A}[|u|^2]u \right||_2^2 \end{aligned}$$

by dominated convergence. The functions \(\mathbf {A}[|u_n|^2]u_n\) are therefore even strongly converging to \(\mathbf {A}[|u|^2]u\) in \(L^2(\mathbb {R}^2)\) by dominated convergence. It then follows that

$$\begin{aligned} \left|| (\nabla + i\beta \mathbf {A}[|u|^2])u \right||_2&= \sup _{\Vert v\Vert =1} |\langle \nabla u + i\beta \mathbf {A}[|u|^2]u, v \rangle | \\&= \sup _{\Vert v\Vert =1} \lim _{n \rightarrow \infty } |\langle \nabla u_n + i\beta \mathbf {A}[|u_n|^2]u_n, v \rangle | \\&\le \liminf _{n \rightarrow \infty } \sup _{\Vert v\Vert =1} |\langle \nabla u_n + i\beta \mathbf {A}[|u_n|^2]u_n, v \rangle | \\&= \liminf _{n \rightarrow \infty } \left|| (\nabla + i\beta \mathbf {A}[|u_n|^2])u_n \right||_2, \end{aligned}$$

and since \(\left||\cdot \right||_{L^2_V}\) is also weakly lower semicontinuous (see, e.g., [44, Supplementto IV.5]), we have \(\liminf _{n \rightarrow \infty } \mathcal {E}^{\mathrm {af}}[u_n] \ge \mathcal {E}^{\mathrm {af}}[u ^{\mathrm {af}}]\). Thus, with \(\Vert u ^{\mathrm {af}}\Vert = \lim _{n \rightarrow \infty } \Vert u_n\Vert = 1\), we also have \(\mathcal {E}^{\mathrm {af}}[u ^{\mathrm {af}}] = E ^{\mathrm {af}}\). \(\square \)

Proposition 3.8

(Convergence to bosons) Let \(E_0\) resp. \(u_0\) denote the ground-state eigenvalue resp. normalized eigenfunction of the non-magnetic Schrödinger operator \(H_1 = -\Delta + V\), with \(V \in L^{\infty }_{\mathrm{loc}}\). We have

$$\begin{aligned} E ^{\mathrm {af}}_{(\beta )} \underset{\beta \rightarrow 0}{\rightarrow } E_0, \end{aligned}$$

and that given an arbitrary sequence \((u_\beta )\) of minimizers for \(\mathcal {E}^{\mathrm {af}}_{(\beta )}\)

$$\begin{aligned} u_\beta \underset{\beta \rightarrow 0}{\rightarrow } u_0 \text{ in } L^2(\mathbb {R}^2) \end{aligned}$$

up to a subsequence and a constant phase.

Proof

Note that under our conditions for V, \(u_0 \in \mathscr {D}^{\mathrm {af}}\) is the unique minimizer of \(\mathcal {E}_0 = \mathcal {E}^{\mathrm {af}}_{(\beta =0)}\) and can be taken positive (see, e.g., [29, Theorem 11.8]). By the diamagnetic inequality (3.30), and by taking the trial state \(u_0 = |u_0|\) in \(\mathcal {E}^{\mathrm {af}}_{(\beta \ne 0)}\), we find

$$\begin{aligned} E_0 \le E ^{\mathrm {af}}_{(\beta )} \le \mathcal {E}^{\mathrm {af}}_{(\beta )}[u_0] = \mathcal {E}_0[u_0] + \beta ^2\left||\mathbf {A}[|u_0|^2]u_0 \right||_2^2 \le (1 + C\beta ^2)E_0 \end{aligned}$$

(where we also used Lemma 3.4), and hence \(E ^{\mathrm {af}}_{(\beta )} \rightarrow E_0\) as \(\beta \rightarrow 0\). Now consider a sequence \((u_\beta ) \subset \mathscr {D}^{\mathrm {af}}\) of minimizers as \(\beta \rightarrow 0\) with \(\mathcal {E}^{\mathrm {af}}[u_\beta ] \rightarrow E_0\), \(\Vert u_\beta \Vert =1\). Then, because of uniform boundedness and as in the proof of Proposition 3.7, we have after taking a subsequence that \(u_\beta \rightarrow u\) for some \(u \in \mathscr {D}^{\mathrm {af}}\), \(\Vert u\Vert =1\), and also

$$\begin{aligned} \Vert \nabla u\Vert&= \sup _{\Vert v\Vert =1} \left| \langle \nabla u,v \rangle \right| \\&= \sup _{\Vert v\Vert =1} \lim _{\beta \rightarrow 0} \left| \langle \nabla u_\beta + i\beta \mathbf {A}[|u_\beta |^2]u_\beta ,v \rangle \right| \\&\le \liminf _{\beta \rightarrow 0} \left|| \nabla u_\beta + i\beta \mathbf {A}[|u_\beta |^2]u_\beta \right||, \end{aligned}$$

so

$$\begin{aligned} E_0 \le \mathcal {E}_0[u] \le \liminf _{\beta \rightarrow 0} \mathcal {E}^{\mathrm {af}}_{(\beta )}[u_\beta ]. \end{aligned}$$

It follows that \(\mathcal {E}_0[u] = E_0\) and hence \(u=u_0\) up to a constant phase.

From the bound (3.31) we observe that the self-generated magnetic interaction is stronger than a contact interaction of strength \(2\pi |\beta |\) (despite the fact that we already removed a singular repulsive interaction in the initial regularization step for extended anyons). Hence we have not only \(E ^{\mathrm {af}}\ge E_0\) by the diamagnetic inequality, but also

$$\begin{aligned} E ^{\mathrm {af}}\ge \min _{\rho \ge 0,\ \int _{\mathbb {R}^2} \rho = 1} \int _{\mathbb {R}^2} \left( 2\pi |\beta |\rho ^2 + V\rho \right) , \end{aligned}$$
(3.32)

which can be computed for given V by straightforward optimization.

Let us now consider the corresponding situation for the regularized functional (extended anyons)

$$\begin{aligned} \mathcal {E}^{\mathrm {af}}_R[u] := \int _{\mathbb {R}^2} \left( \left| \left( \nabla + i \beta \mathbf {A}^R[|u|^2] \right) u \right| ^2 + V|u|^2 \right) , \quad \mathbf {A}^R[\rho ] := \nabla ^{\perp }w_R * \rho , \quad R > 0. \end{aligned}$$

Since \(\nabla w_R \in L^\infty (\mathbb {R}^2)\) we have \(\mathbf {A}^R[|u|^2] \in L^\infty (\mathbb {R}^2)\) with

$$\begin{aligned} \left||\mathbf {A}^R[|u|^2] \right||_\infty \le \frac{C}{R}\Vert u\Vert _2^2 \end{aligned}$$

and instead of Lemma 3.4 we have

$$\begin{aligned} \left||\mathbf {A}^R[|u|^2]u \right||_2 \le C\Vert u\Vert _2^2 \Vert |u|\Vert _{H^1} \end{aligned}$$

using Lemma 2.4. Hence the natural domain is again \(\mathscr {D}^{\mathrm {af}}\) and all properties established above for \(\mathcal {E}^{\mathrm {af}}\) are also found to be valid for \(\mathcal {E}^{\mathrm {af}}_R\) (except (3.31) and (3.32) which now have regularized versions). Denoting

$$\begin{aligned} E ^{\mathrm {af}}_R := \min \left\{ \mathcal {E}^{\mathrm {af}}_R[u] : u \in \mathscr {D}^{\mathrm {af}}, \Vert u\Vert _2 = 1\right\} , \end{aligned}$$

we furthermore have the following relationship:

Proposition 3.9

(Convergence to point-like anyons) The functional \(\mathcal {E}^{\mathrm {af}}_R\) converges pointwise to \(\mathcal {E}^{\mathrm {af}}\) as \(R \rightarrow 0\). More precisely, for any \(u\in \mathscr {D}^{\mathrm {af}}\)

$$\begin{aligned} \left| \mathcal {E}^{\mathrm {af}}_R [u] - \mathcal {E}^{\mathrm {af}}[u] \right| \le C_u |\beta |(1+\beta ^4) (1+\mathcal {E}^{\mathrm {af}}[u])^{3/2} R, \end{aligned}$$
(3.33)

where \(C_u\) depends only on \(\left||u \right||_2\). Hence,

$$\begin{aligned} E ^{\mathrm {af}}_R \underset{R\rightarrow 0}{\rightarrow } E ^{\mathrm {af}}, \end{aligned}$$

and if \((u_R)_{R \rightarrow 0} \subset \mathscr {D}^{\mathrm {af}}\) denotes a sequence of minimizers of \(\mathcal {E}^{\mathrm {af}}_R\), then there exists a subsequence \((u_{R'})_{R' \rightarrow 0}\) s.t. \(u_{R'} \rightarrow u ^{\mathrm {af}}\) as \(R' \rightarrow 0\), where \(u ^{\mathrm {af}}\) is some minimizer of \(\mathcal {E}^{\mathrm {af}}\).

Proof

We have for any \(u \in \mathscr {D}^{\mathrm {af}}\) that

$$\begin{aligned}&\left| \left|| (\nabla + i\beta \mathbf {A}[|u|^2])u \right||_2 - \left|| (\nabla + i\beta \mathbf {A}^R[|u|^2])u \right||_2 \right| \\&\quad \le \left|| (\nabla + i\beta \mathbf {A}[|u|^2])u - (\nabla + i\beta \mathbf {A}^R[|u|^2])u \right||_2= |\beta | \left|| (\mathbf {A}[|u|^2] - \mathbf {A}^R[|u|^2])u \right||_2 \\&\quad \le |\beta | \left|| \mathbf {A}[|u|^2] - \mathbf {A}^R[|u|^2] \right||_4 \left||u \right||_4= |\beta | \left|| (\nabla w_0 - \nabla w_R) * |u|^2 \right||_4 \left||u \right||_4, \end{aligned}$$

where by Young

$$\begin{aligned} \left|| (\nabla w_0 - \nabla w_R) * |u|^2 \right||_4 \le \left|| \nabla w_0 - \nabla w_R \right||_1 \left|||u|^2 \right||_4 \le \left||\nabla w_0 \right||_{L^1(B(0,R))} \left||u \right||_8^2 \rightarrow 0, \end{aligned}$$

as \(R \rightarrow 0\), since \(\nabla w_0 \in L^1_{\mathrm{loc}}(\mathbb {R}^2)\). We deduce (3.33) by combining this with previous estimates of this appendix and Sobolev embeddings. It follows that \(\mathcal {E}^{\mathrm {af}}_R[u] \rightarrow \mathcal {E}^{\mathrm {af}}[u]\) as \(R \rightarrow 0\).

Let \((u_R)_{R \rightarrow 0}\) denote a sequence of minimizers of \(\mathcal {E}^{\mathrm {af}}_R\):

$$\begin{aligned} E ^{\mathrm {af}}_R = \mathcal {E}^{\mathrm {af}}_R[u_R],\, \Vert u_R\Vert = 1, \end{aligned}$$

and take \(u \in \mathscr {D}^{\mathrm {af}}\) an arbitrary minimizer of \(\mathcal {E}^{\mathrm {af}}\). Then, since

$$\begin{aligned} E ^{\mathrm {af}}_R \le \mathcal {E}^{\mathrm {af}}_R[u] \underset{R\rightarrow 0}{\rightarrow } \mathcal {E}^{\mathrm {af}}[u] = E ^{\mathrm {af}}, \end{aligned}$$

we have that \(E ^{\mathrm {af}}_R\) is uniformly bounded as \(R \rightarrow 0\) and that

$$\begin{aligned} \limsup _{R \rightarrow 0} E ^{\mathrm {af}}_R \le E ^{\mathrm {af}}. \end{aligned}$$

Then \(\mathcal {E}^{\mathrm {af}}_R[u_R]\), and hence also

$$\begin{aligned} \mathcal {E}^{\mathrm {af}}[u_R] \le C\left( \Vert u_R\Vert _{H^1}^2 + \Vert u_R\Vert _{L^2_V}^2 \right) \le C'(\mathcal {E}^{\mathrm {af}}_R[u_R] + 1), \end{aligned}$$

are uniformly bounded as well. As in the proof of Proposition 3.7, there then exists a strongly convergent subsequence \((u_{R'})_{R' \rightarrow 0}\), with \(u_{R'} \rightarrow u_0 \in \mathscr {D}^{\mathrm {af}}\). Also, by weak lower semicontinuity \(\mathcal {E}^{\mathrm {af}}[u_0] \le \liminf _{R' \rightarrow 0} \mathcal {E}^{\mathrm {af}}[u_{R'}]\), so that for any \(\varepsilon > 0\) and sufficiently small \(R'>0\),

$$\begin{aligned} E ^{\mathrm {af}}\le \mathcal {E}^{\mathrm {af}}[u_0] \le \mathcal {E}^{\mathrm {af}}[u_{R'}] + \varepsilon \le \mathcal {E}^{\mathrm {af}}_{R'}[u_{R'}] + 2\varepsilon = E ^{\mathrm {af}}_{R'} + 2\varepsilon , \end{aligned}$$

where we also used that the convergence is uniform for our uniformly bounded sequence \(u_R\) by the bound (3.33). It follows that \(E ^{\mathrm {af}}\le \mathcal {E}^{\mathrm {af}}[u_0] \le E ^{\mathrm {af}}+ 3\varepsilon \), and hence \(u_0\) is a minimizer with \(\Vert u_0\Vert =1\) and \(E ^{\mathrm {af}}= \mathcal {E}^{\mathrm {af}}[u_0] = \lim _{R \rightarrow 0} E ^{\mathrm {af}}_R\). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundholm, D., Rougerie, N. The Average Field Approximation for Almost Bosonic Extended Anyons. J Stat Phys 161, 1236–1267 (2015). https://doi.org/10.1007/s10955-015-1382-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1382-y

Keywords

Navigation