Skip to main content
Log in

Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The paper considers a model for Bose gases in the so-called ‘high-temperature range’ below the temperature where Bose–Einstein condensation sets in. The model is of non-linear two-component type, consisting of a kinetic equation with periodic boundary conditions for the distribution function of a gas of excitations interacting with a Bose condensate, which is described by a Gross–Pitaevskii equation. Results on well-posedness and long time behaviour are proved in a Sobolev space setting close to equilibrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allemand, T.: Derivation of a two-fluids model for a Bose gas from a quantum kinetic system. Kin. Rel. Model. 2, 379–402 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arkeryd, L., Nouri, A.: Bose condensates in interaction with excitations—a kinetic model. Commun. Math. Phys. 310, 765–788 (2012)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  3. Arkeryd, L., Nouri, A.: A Milne problem from a Bose condensate with excitations. Kinet. Relat. Model. 6, 671–686 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bose, S.N.: Planck’s law and light quantum hypothesis. Z. Phys. 26, 178 (1924)

    Article  MATH  ADS  Google Scholar 

  5. Eckern, U.: Relaxation processes in a condensate Bose gas. J. Low Temp. Phys. 54, 333–359 (1984)

    Article  ADS  Google Scholar 

  6. Einstein, A.: Sitzber. Kgl. Preuss. Akad. Wiss. 261 (1924)

  7. Escobedo, M., Velázques, J.: Finite time blow-up and condensation for the bosonic Nordheim equation. Invent. Math. (2013). doi:10.1007/s00222-014-0539-7

    Google Scholar 

  8. Escobedo, M., Pezzotti, F., Valle, M.: Analytical approach to relaxation dynamics of condensed Bose gases. Ann. Phys. 326, 808–827 (2011)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. Golse, F., Levermore, D.: Stokes-Fourier and acoustic limits for the Boltzmann equation; convergence proofs. Commun. Pure Appl. Math. 55, 336–393 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Griffin, A., Nikuni, T., Zaremba, E.: Bose-condensed gases at finite temperatures. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  11. Hohenberg, P., Martin, P.: Microscopic theory of superfluid helium. Ann. Phys. 34, 291–359 (1965)

    Article  ADS  Google Scholar 

  12. Imamovic-Tomasovic, M., Kadanoff-Baym, L.: Kinetic Theory for a Trapped Bose Condensate Gas, Thesis. University of Toronto, Toronto (2001)

    Google Scholar 

  13. Imamovic-Tomasovic, M., Griffin, A.: Quasiparticle kinetic equation in a trapped Bose gas at low temperature. J. Low Temp. Phys. 122, 617–655 (2001)

    Article  ADS  Google Scholar 

  14. Khalatnikov, I.M.: Theory of Superfluidity (in Russian). Nauka, Moskva (1971)

    Google Scholar 

  15. Kirkpatrick, T.R., Dorfman, J.R.: Transport in a dilute but condensed nonideal Bose gas: kinetic equations. J. Low Temp. Phys. 58, 301–331 (1985)

    Article  ADS  Google Scholar 

  16. Kirkpatrick, T.R., Dorfman, J.R.: Transport coefficients in a dilute but condensed Bose gas. J. Low Temp. Phys. 58, 399–415 (1985)

    Article  ADS  Google Scholar 

  17. Kane, J., Kadanoff, L.: Green’s functions and superfluid hydrodynamics. J. math. Phys. 6, 1902–1912 (1965)

    Article  ADS  Google Scholar 

  18. Lu, X.: The Boltzmann equation for Bose-Einstein particles: condensation in finite time. J. Stat. Phys. 150, 1138–1176 (2013)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. Maslova, N.: Nonlinear Evolution Equations: Kinetic Approach. World Scientific, Singapore (1993)

    MATH  Google Scholar 

  20. Nordheim, L.W.: On the kinetic methods in the new statistics and its applications in the electron theory of conductivity. Proc. R. Soc. Lond. Ser. A 119, 689–698 (1928)

    Article  MATH  ADS  Google Scholar 

  21. Pitaevski, L., Stringari, S.: Bose-Einstein Condensation. Clarendon Press, Oxford (2003)

    Google Scholar 

  22. Pomeau, Y., Brachet, M-É., Métens, S., Rica, S.: Théorie cinétique d’un gaz de Bose dilué avec condensat, CRAS 327 Série II b, 791–798 (1999)

  23. Spohn, H.: Kinetics of the Bose-Einstein condensation. Physica D 239, 627–634 (2010)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. Stoof, H.: Coherent versus incoherent dynamics during Bose-Einstein condensation in atomic gases. J. Low Temp. Phys. 114, 11–108 (1999)

    Article  ADS  Google Scholar 

  25. Uehling, E.A., Uhlenbeck, G.E.: Transport phenomena in Einstein-Bose and Fermi-Dirac gases. Phys. Rev. 43, 552–561 (1933)

    Article  ADS  Google Scholar 

  26. Zaremba, E., Nikuni, T., Griffin, A.: Dynamics of trapped Bose gases at finite temperatures. J. Low Temp. Phys. 116, 277–345 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Nouri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkeryd, L., Nouri, A. Bose Condensates in Interaction with Excitations: A Two-Component Space-Dependent Model Close to Equilibrium. J Stat Phys 160, 209–238 (2015). https://doi.org/10.1007/s10955-015-1229-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-015-1229-6

Keywords

Mathematics Subject Classification

Navigation