Skip to main content
Log in

Contagion Shocks in One Dimension

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We consider an agent-based model of emotional contagion coupled with motion in one dimension that has recently been studied in the computer science community. The model involves movement with a speed proportional to a “fear” variable that undergoes a temporal consensus averaging based on distance to other agents. We study the effect of Riemann initial data for this problem, leading to shock dynamics that are studied both within the agent-based model as well as in a continuum limit. We examine the behavior of the model under distinguished limits as the characteristic contagion interaction distance and the interaction timescale both approach zero. The limiting behavior is related to a classical model for pressureless gas dynamics with “sticky” particles. In comparison, we observe a threshold for the interaction distance vs. interaction timescale that produce qualitatively different behavior for the system - in one case particle paths do not cross and there is a natural Eulerian limit involving nonlocal interactions and in the other case particle paths can cross and one may consider only a kinetic model in the continuum limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Barbaro, A., Rosado, J.: Contagion models for crowd behavior in panic situations. Preprint.

  2. Barsade, S.G., Gibson, D.E.: Group emotion: a view from top and bottom. In: Gruenfeld, D., Mannix, E., Neale, M. (eds.) Research on Managing on Groups and Teams, pp. 81–102. JAI Press, Stamford (1998)

    Google Scholar 

  3. Bellomo, N., Delitala, M., Coscia, V.: On the mathematical theory of vehicular traffic flow. I. Fluid dynamic and kinetic modelling. Math. Models Methods Appl. Sci. 12(12), 1801–1843 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bosse, T., Duell, R., Memon, Z.A., Treur, J., Wal, C.N.V.D.: A multi-agent model for mutual absorption of emotions. ECMS 2009, 212–218 (2009)

    Article  Google Scholar 

  5. Bosse, T., Hoogendoorn, M., Klein, M., Treur, J., van der Wal, N.: Agent-based analysis of patterns in crowd behaviour involving contagion of mental states. In: IEA/AIE 2011, Heidelberg (2011)

  6. Bouchut, F.: On zero pressure gas dynamics. In Advances in kinetic theory and computing. Adv. Math. Appl. Sci. 22, 171–190 (1994)

    MathSciNet  Google Scholar 

  7. Bouchut, F., James, F.: Duality solutions for pressureless gases, monotone scalar conservation laws, and uniqueness. Commun. Partial Differ. Equ. 24(11–12), 2173–2189 (1999)

    MATH  MathSciNet  Google Scholar 

  8. Bouchut, F., Jin, S., Li, X.: Numerical approximations of pressureless and isothermal gas dynamics. SIAM J. Numer. Anal. 41(1), 135–158 (2004)

    Article  MathSciNet  Google Scholar 

  9. Brenier, Y., Grenier, E.: Sticky particles and scalar conservation laws. SIAM J. Numer. Anal. 35(6), 2317–2328 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  10. Carrillo, J.A., Fornasier, M., Rosado, J., Toscani, G.: Asymptotic flocking dynamics for the kinetic cucker-smale model. SIAM J. Math. Anal. 5, 218–236 (2010)

  11. Chakraborti, A.: Distributions of money in models of market economy. Int. J. Modern Phys. C 13, 1315–1321 (2002)

    Article  ADS  Google Scholar 

  12. Chen, G.-Q., Liu, H.: Formation of \(\delta \)-shocks and vacuum states in the vanishing pressure limit of solutions to the Euler equations for isentropic fluids. SIAM J. Math. Anal. 34(4), 925–938 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cucker, F., Smale, S.: Emergent behavior in flocks. IEEE Trans. Automat. Control 52, 852–862 (2007)

    Article  MathSciNet  Google Scholar 

  14. Degond, P., Liu, J.G., Ringhofer, C.: Large-scale dynamics of mean-field games driven by local nash equilibria. J. Nonlinear Sci. 24, 93–115 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  15. Diamond, J., McVay, M., Zavala. M.W.: Quick, safe, secure: Addressing human behavior during evacuations at lax, 2010. Master’s thesis, UCLA Dept of Public Policy

  16. Dodds, P., Watts, D.J.: A generalized model of social and biological contagion. J. Theor. Biol. 232(4), 587–604 (2005)

    Article  MathSciNet  Google Scholar 

  17. Dragulescu, A., Yakovenko, V.M.: Statistical mechanics of money. Eur. Phys. J. B 17, 723–729 (2000)

    Article  ADS  Google Scholar 

  18. Düring, B.: Kinetic modelling of opinion leadership. SIAM News 44(10), 1–8 (2011)

  19. Durupinar, F.: From Audiences to Mobs: Crowd Simulation with Psychological Factors. PhD thesis, Bilkent University, Dept. Comp. Eng. (2010)

  20. Evans, L.: Partial, differential equations (2010)

  21. Fan, S., Seibold, B.: A comparison of data-fitted first order traffic models and their second order generalizations via trajectory and sensor data. In: Proceedings of the Transportation Research Board, 92nd Meeting (2013)

  22. Ferrante, E., Turgut, A.E., Huepe, C., Stranieri, A., Pinciroli, C., Dorigo, M.: Self-organized flocking with a mobile robot swarm: a novel motion control method. Complete data, (2012)

  23. Fetecau, R.C., Huang, Y., Kolokolnikov, T.: Swarm dynamics and equilibria for a nonlocal aggregation model. Nonlinearity 24(10), 2681–2716 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. Galam, S., Gefen, Y., Shapir, Y.: Sociophysics: a new approach of sociological collective behavior. J. Math. Sociol. 9, 1–13 (1982)

    Article  MATH  Google Scholar 

  25. Gasser, I.: On non-entropy solutions of scalar conservation laws for traffic flow. Zeitschr. Angew. Math. Mech. 83(2), 137–143 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Grenier, E.: Existence globale pour le système des gaz sans pression. Acad. Sci. Paris Ser. I Math. 321(1), 171–174 (1995)

    MATH  MathSciNet  Google Scholar 

  27. Ha, S.Y., Tadmor, E.: From particle to kinetic and hydrodynamic descriptions of flocking. Kinet. Relat. Models 1, 415–435 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Huang, F., Wang, Z.: Well posedness for pressureless flow. Commun. Math. Phys. 222(1), 117–146 (2001)

    Article  ADS  MATH  Google Scholar 

  29. Kermack, W.O., McKendrick, A.G.: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. Ser. A 115, 700–721 (1927)

    Article  ADS  MATH  Google Scholar 

  30. Li, J., Yang, H.: Delta-shocks as limits of vanishing viscosity for multidimensional zero-pressure gas dynamics. Quart. Appl. Math. 59(2), 315–342 (2001)

    MATH  MathSciNet  Google Scholar 

  31. Li, J., Zhang, T.: Generalized Rankine-Hugoniot relations of delta-shocks in solutions of transportation equations. In: Bertozzi, A.L. (ed.) Advances in Nonlinear Partial Differential Equations and Related Areas (Beijing, 1997), pp. 219–232. World Scientific Publishing, River Edge (1998)

    Chapter  Google Scholar 

  32. Motsch, S., Tadmor, E.: A new model for self-organized dynamics and its flocking behavior. J. Stat. Phys. 144(5), 923–947 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Murray, J.D.: Mathematical Biology. Springer, New York (2002)

    MATH  Google Scholar 

  34. Perea, L., Gómez, G., Elosegui, P.: Extension of the cucker-smale control law to space flight formations. AIAA J. Guid. Control Dyn. 32, 527–537 (2009)

    Article  ADS  Google Scholar 

  35. Poupaud, F., Rascle, M.: Measure solutions to the linear multi-dimensional transport equation with non-smooth coefficients. Commun. Partial Differ. Equ. 22(1–2), 337–358 (1997)

    MATH  MathSciNet  Google Scholar 

  36. Schelling, T.C.: Hockey helmets, concealed weapons, and daylight saving: a study of binary choices with externalities. J. Confl. Resolut. 17, 381–428 (1973)

    Article  Google Scholar 

  37. Sheng, W.: The Riemann problem for the transportation equations in gas dynamics. Mem. Am. Math. Soc. 137(654), viii+77 (1999)

    Google Scholar 

  38. Topaz, C.M., Bertozzi, A.L.: Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math. 65, 152–174 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  39. Topaz, C.M., Bertozzi, A.L., Lewis, M.A.: A nonlocal continuum model for biological aggregation. Bull. Math. Biol. 68(7), 1601–1623 (2006)

    Article  MathSciNet  Google Scholar 

  40. Tsai, J., Bowring, E., Marsella, S., Tambe, M.: Empirical evaluation of computational emotional contagion models. In: Proceedings of the 10th international conference on Intelligent virtual agents, IVA’11, pp. 384–397, Springer, Berlin (2011)

  41. Tsai, J., Fridman, N., Bowring, N., Brown, M., Epstein, Kaminka, G., Marsella, S., Ogden, A., Rika, I., Sheel, A., Taylor, M.E., Wang, X., Zilka, A., Tambe E.: Escapes: evacuation simulation with children, authorities, parents, emotions, and social comparison. In: The 10th International Conference on Autonomous Agents and Multiagent Systems , vol. 2, AAMAS ’11, pp. 457–464, Richland, International Foundation for Autonomous Agents and Multiagent Systems (2011)

  42. Vicsek, T., Cziròk, A., Ben-Jacob, E., Cohen, I., Shochet, O.: Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75, 1226–1229 (1995)

    Article  ADS  Google Scholar 

  43. Wang, Z., Huang, F., Ding, X.: On the Cauchy problem of transportation equations. Acta Math. Appl. Sin. 13(2), 113–122 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  44. Weinan, E., Yu, G.R., Sinai, Y.G.: Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics. Commun. Math. Phys. 177(2), 349–380 (1996)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Milind Tambe and Jason Tsai for suggesting this problem. We also thank Maria D’Orsogna for useful discussions early on. This work has been supported by ARO MURI Grant W911NF-11-1-0332, NSF Grant DMS-0968309, NSF Grant DMS-0907931, and ARO Grant W911NF1010472.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesus Rosado.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bertozzi, A.L., Rosado, J., Short, M.B. et al. Contagion Shocks in One Dimension. J Stat Phys 158, 647–664 (2015). https://doi.org/10.1007/s10955-014-1019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-1019-6

Keywords

Navigation