Skip to main content
Log in

Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A set of analytical and computational tools based on transition path theory (TPT) is proposed to analyze flows in complex networks. Specifically, TPT is used to study the statistical properties of the reactive trajectories by which transitions occur between specific groups of nodes on the network. Sampling tools are built upon the outputs of TPT that allow to generate these reactive trajectories directly, or even transition paths that travel from one group of nodes to the other without making any detour and carry the same probability current as the reactive trajectories. These objects permit to characterize the mechanism of the transitions, for example by quantifying the width of the tubes by which these transitions occur, the location and distribution of their dynamical bottlenecks, etc. These tools are applied to a network modeling the dynamics of the Lennard–Jones cluster with 38 atoms (\(\mathrm{LJ}_{38}\)) and used to understand the mechanism by which this cluster rearranges itself between its two most likely states at various temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. Note that in [24], (9) was referred to as the current of reactive trajectories and (10) as the effective current of reactive trajectories: the terminology used here is more consistent with standard conventions in which a current should be antisymmetric in its indices.

References

  1. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network flows: Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  2. Beltrán, J., Landim, C.: Tunneling and metastability of continuous time Markov chains. J. Stat. Phys. 140, 1065–1114 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  3. Berezhkovskii, A., Hummer, G., Szabo, A.: Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J. Chem. Phys. 130, 205102 (2009)

    Article  ADS  Google Scholar 

  4. Berman, K.A., Konsowa, M.H.: Random paths and cuts, electrical networks, and reversible Markov chains. SIAM J. Discret. Math. 3, 311–319 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bianchi, A., Bovier, A., Ioffe, D.: Sharp asymptotics for metastability in the random field Curie–Weiss model. Electron. J. Probab. 14, 1541–1603 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bovier, A.: Metastability. In: Kotecky, R. (ed.) Methods of Contemporary Statistical Mechanics. Springer, Berlin (2009). LNM 1970

    Google Scholar 

  7. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability and low lying spectra in reversible Markov chains. Commun. Math. Phys. 228, 219–255 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Bovier, A., Eckhoff, M., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes 1. Sharp estimates for capacities and exit times. J. Eur. Math. Soc. 6, 399–424 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bovier, A., Gayrard, V., Klein, M.: Metastability in reversible diffusion processes. 2. Precise estimates for small eigenvalues. J. Eur. Math. Soc. 7, 69–99 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vanden-Eijnden, E.: Transition path theory. In: Bowman, G.R., Pande, V.S., Noé, F. (eds.) An introduction to markov state models and their application to long time scale molecular simulation. Advances in experimental medicine and biology, vol. 797. Springer (2014)

  11. Cameron, M.K.: Computing Freidlin’s cycles for the overdamped Langevin dynamics. J. Stat. Phys. 152, 493–518 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  12. Den Hollander, F.: Three lectures on metastability under stochastic dynamics. In: Kotecky, R. (ed.) Methods of Contemporary Mathematical Statistical Physics. Springer, Berlin (2009). Lecture Notes in Math. 1970

    Google Scholar 

  13. Den Hollander, F., Jansen, S.: Berman–Konsowa principle for reversible Markov jump processes. arXiv:1309.1305v1

  14. Doyle, P. G., Snell, J. L.: Random Walks and Electric Networks, volume 22 of Carus Mathematical Monographs. Mathematical Association of America, Washington, DC (1984)

  15. Doye, J.P.K., Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom Lennard–Jones cluster. J. Chem. Phys. 110, 6896–6906 (1999)

    Article  ADS  Google Scholar 

  16. E, W., Vanden-Eijnden, E.: Towards a theory of transition paths. J. Stat. Phys. 123, 503–523 (2006)

  17. E, W., Vanden-Eijnden, E.: Transition-path theory and path-finding algorithms for the study of rare events. Ann. Rev. Phys. Chem. 61, 391–420 (2010)

  18. Freidlin, M.I.: Sublimiting distributions and stabilization of solutions of parabolic equations with small parameter. Soviet Math. Dokl. 18(4), 1114–1118 (1977)

    MATH  Google Scholar 

  19. Freidlin, M.I., Wentzell, A.D.: Random Perturbations of Dynamical Systems, 3rd edn. Springer, Berlin (2012)

    Book  MATH  Google Scholar 

  20. Freidlin, M.I.: Quasi-deterministic approximation, metastability and stochastic resonance. Physica D 137, 333–352 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Lu, J., Nolen, J.: Reactive trajectories and transition path processes. Probab. Theory Relat. Fields. 1–50 (2014). doi:10.1007/s00440-014-0547-y

  22. Mandelshtam, V.A., Frantsuzov, P.A.: Multiple structural transformations in Lennard–Jones clusters: generic versus size-specific behavior. J. Chem. Phys. 124, 204511 (2006)

    Article  ADS  Google Scholar 

  23. Metzner, P., Schuette, Ch., Vanden-Eijnden, E.: Illustration of transition path theory on a collection of simple examples. J. Chem. Phys. 125, 084110 (2006)

    Article  ADS  Google Scholar 

  24. Metzner, P., Schuette, Ch., Vanden-Eijnden, E.: Transition path theory for Markov jump processes. SIAM Multiscale Model. Simul. 7, 1192–1219 (2009)

    Article  MATH  Google Scholar 

  25. Miller III, T.F., Predescu, C.: Sampling diffusive transition paths. J. Chem. Phys. 126, 144102 (2007)

    Article  ADS  Google Scholar 

  26. Neirotti, J.P., Calvo, F., Freeman, D.L., Doll, J.D.: Phase changes in 38-atom Lennard–Jones clusters. I. A parallel tempering study in the canonical ensemble. J. Chem. Phys. 112, 10340 (2000)

    Article  ADS  Google Scholar 

  27. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer Verlag, Springer Series in Operational Research (2006)

  28. Olivieri, E., Vares, M.E.: Large deviations and metastability. Encyclopedia of mathematics and its applications. Cambridge University Press, Cambridge (2005)

    Book  Google Scholar 

  29. Picciani, M., Athenes, M., Kurchan, J., Taileur, J.: Simulating structural transitions by direct transition current sampling: The example of (LJ\(_{38}\)). J. Chem. Phys. 135, 034108 (2011)

    Article  ADS  Google Scholar 

  30. Vanden-Eijnden, E.: Transition path theory. In: Ferrario, M., Ciccotti, G., Binder, K. (eds.) omputer Simulations in Condensed Matter: From Materials to Chemical Biology, pp. 439–478. Springer, Berlin (2006)

    Google Scholar 

  31. Wales, D.J.: Discrete path sampling. Mol. Phys. 100, 3285–3306 (2002)

    Article  ADS  Google Scholar 

  32. Wales, D.J.: Energy Landscapes. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  33. Wales, D.J.: Some further applications of discrete path sampling to cluster isomerization. Mol. Phys. 102, 891–908 (2004)

    Article  ADS  Google Scholar 

  34. Wales, D.J.: Energy landscapes: calculating pathways and rates. Int. Rev. Chem. Phys. 25, 237–282 (2006)

    Article  Google Scholar 

  35. Wales, D.J.: Calculating rate constants and committor probabilities for transition networks by graph transformation. J. Chem. Phys. 130, 204111 (2009)

    Article  ADS  Google Scholar 

  36. Wales’s website contains the database for the Lennard–Jones-38 cluster: http://www-wales.ch.cam.ac.uk/examples/PATHSAMPLE/

  37. Wales, D.J., Doye, J.P.K.: Global optimization by Basin–Hopping and the lowest energy structures of Lennard–Jones clusters containing upto 110 atoms. J. Phys. Chem. A 101, 5111–5116 (1997)

    Article  Google Scholar 

  38. Wentzell, A.D.: On the asymptotics of eigenvalues of matrices with elements of order \(\exp \{-V_{ij}/2(\epsilon ^2)\}\). Soviet Math. Dokl. 13, 65–68 (1972)

    Google Scholar 

Download references

Acknowledgments

We thank Prof. David Wales for providing us with the data of the \(\mathrm{LJ}_{38}\) network and Miranda Holmes-Cerfon for interesting discussions. M. C. held an Sloan Research Fellowship and was supported in part by DARPA YFA Grant N66001-12-1-4220, and NSF Grant 1217118. E. V.-E. was supported in part by NSF Grant DMS07-08140 and ONR Grant N00014-11-1-0345.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Vanden-Eijnden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cameron, M., Vanden-Eijnden, E. Flows in Complex Networks: Theory, Algorithms, and Application to Lennard–Jones Cluster Rearrangement. J Stat Phys 156, 427–454 (2014). https://doi.org/10.1007/s10955-014-0997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0997-8

Keywords

Navigation