Skip to main content
Log in

Equivalent Definitions of the Quantum Nonadiabatic Entropy Production

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

The nonadiabatic entropy production is a useful tool for the thermodynamic analysis of continuously dissipating, nonequilibrium steady states. For open quantum systems, two seemingly distinct definitions for the nonadiabatic entropy production have appeared in the literature, one based on the quantum relative entropy and the other based on quantum trajectories. We show that these two formulations are equivalent. Furthermore, this equivalence leads us to a proof of the monotonicity of the quantum relative entropy under a special class of completely-positive, trace-preserving quantum maps, which circumvents difficulties associated with the noncommuntative structure of operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. \(W\) is a stochastic matrix, since \({\mathcal E}\) preserves the trace (9).

References

  1. Parrondo, J.M.R., De Cisneros, B.J.: Energetics of brownian motors: a review. Appl. Phys. A 75, 179–191 (2002)

    Article  ADS  Google Scholar 

  2. Seifert, U.: Stochastic thermodynamics, fluctuation theorems, and moleculer machines. Rep. Prog. Phys. 75, 126,001 (2012).

  3. Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Hatano, T., Sasa, S.I.: Steady-state thermodynamics of Langevin systems. Phys. Rev. Lett. 86(16), 3463–3466 (2001)

    Article  ADS  Google Scholar 

  5. Trepagnier, E.T., Jarzynski, C., Ritort, F., Crooks, G.E., Bustamante, C.J., Liphardt, J.: Experimental test of Hatano and Sasa’s nonequilibrium steady-state equality. Proc. Nat. Acad. Sci. USA 101, 15038–15041 (2004)

    Article  ADS  Google Scholar 

  6. Speck, T., Seifert, U.: Integral fluctuation theorem for the housekeeping heat. J. Phys. A: Math. Gen. 38(34), L581–L588 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Esposito, M., Van den Broeck, C.: Three detailed fluctuation theorems. Phys. Rev. Lett. 104(9), 090,601 (2010).

    Google Scholar 

  8. Ge, H., Qian, H.: Physical origins of entropy produciton, free energy dissipation, and their mathematical representations. Phys. Rev. E 81, 051,133 (2010).

  9. Komatsu, T.S., Nakagawa, N., Sasa, S.I., Tasaki, H.: Steady-state thermodynamics for heat conduction: microscopic derivation. Phys. Rev. Lett. 100, 230602 (2008)

    Article  ADS  Google Scholar 

  10. Sagawa, T., Hayakawa, H.: Geometrical expression of excess entropy production. Phys. Rev. E 84, 051110 (2011)

    Article  ADS  Google Scholar 

  11. Maes, C., Netocny, K.: A nonequilibrium extension of the Clausius heat theorem. http://arxiv.org/abs/1206.3423

  12. Bertini, L., Gabrielli, D., Jona-Lasinio, G., Landim, C.: Clausius inequality and optimality of quaisistatic transformations for nonequilibrium stationary states. Phys. Rev. Lett. 110, 020601 (2013)

    Article  ADS  Google Scholar 

  13. Mandal, D.: Nonequlibrium heat capacity. http://arxiv.org/abs/1311.7176v1

  14. Spinney, R.E., Ford, I.J.: Nonequilibrium thermodynamics of stochastic systems with odd and even variables. Phys. Rev. Lett. 108, 170603 (2012)

    Article  ADS  Google Scholar 

  15. Yukawa, S.: The second law of steady state thermodynamics for nonequilibrium quantum dynamics. http://arxiv.org/abs/cond-mat/0108421

  16. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Hayashi, M.: Quantum Information: An Introduction. Springer-Verlag, Berlin (2006)

    Google Scholar 

  18. Sagawa, T.: Second law-like inequalities with quantum relative entropy: An introduction. http://arxiv.org/abs/1202.0983. In: Nakahara, M. (ed.) Lectures on quantum computing, thermodynamics and statistical physics, Kinki University Series on Quantum Computing, vol. 8, World Scientific, New Jersey (2012)

  19. Horowitz, J.M., Parrondo, J.M.R.: Entropy production along nonequilibrium quantum jump trajectories. New J. Phys. 15, 085028 (2013)

    Article  ADS  Google Scholar 

  20. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  21. Lieb, E.H.: Convex trace functions and the Wigner-Yanase-Dyson conjecture. Adv. Math. 11(3), 267–288 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lieb, E.H.: Proof of the strong subadditivity of quantum-mechanical entropy. J. Math. Phys. 14, 1938 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  23. Lieb, E.H., Ruskai, M.B.: A fundamental property of quantum-mechanical entropy. Phys. Rev. Lett. 30(10), 434–436 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  24. Headrick, M., Takayanagi, T.: Holographic proof of the strong subadditivity of entanglement entropy. Phys. Rev. D 76, 106013 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  25. Nechita, I., Pellegrini, C.: Quantum trajectories in random environment: the statistical model for a heat bath. Confluentes Math. 1, 249–289 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  26. Horowitz, J.M.: Quantum-trajectory approach to the stochastic thermodynamics of a forced harmonic oscillator. Phys. Rev. E 85, 031110 (2012)

    Article  ADS  Google Scholar 

  27. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Claredon Press, Oxford (2009)

    Google Scholar 

  28. Chetrite, R., Mallick, K.: Quantum fluctuation relations for the Lindblad master equation. J. Stat. Phys. 148, 480–501 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. Esposito, M., Van den Broeck, C.: Three faces of the second law. I. Master equation formulation. Phys. Rev. E 82, 011143 (2010)

    Article  ADS  Google Scholar 

  30. Van den Broeck, C., Esposito, M.: Three faces of the second law: II. Fokker-planck formulation. Phys. Rev. E 82, 011144 (2010)

    Google Scholar 

  31. Lindblad, G.: Expectations and entropy inequalities for finite quantum systems. Commun. Math. Phys. 39(2), 111–119 (1974)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  32. Lindblad, G.: Completely positive maps and entropy inequalitites. Commun. Math. Phys. 40(2), 147–151 (1975)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Uhlmann, A.: Relative entropy and the Wigner-Yanase-Dyson-Lieb concavity in an interpolation theory. Commun. Math. Phys. 54(1), 21–32 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Nielsen, M.A., Petz, D.: A simple proof of the strong subadditivity inequality. Quantum Inf. Comput. 5, 507–513 (2005)

    MATH  MathSciNet  Google Scholar 

  35. Petz, D.: Quasi-entropies for finite quantum systems. Rep. Math. Phys. 23(1), 57–65 (1986)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Petz, D.: Monotonicity of quantum relative entropy revisited. Rev. Math. Phys. 15, 79 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  37. Brun, T.A.: A simple model of quantum trajectories. Am. J. Phys. 70(7), 719–737 (2002)

    Article  ADS  Google Scholar 

  38. Jacobs, K., Steck, D.: A straightforward introduction to continuous quantum measurement. Contemp. Phys. 47, 279 (2006)

    Article  ADS  Google Scholar 

  39. Wiseman, H.M.: Quantum trajectories and feedback. Ph.D. thesis, University of Queensland (1994).

  40. Sakurai, J.: Modern Quantum Mechanics. Addison-Wesley, New York (1994)

    Google Scholar 

  41. Fagnola, F., Umanità, V.: Generators of detailed balance quantum markov semigroups. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(3), 335–363 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  42. Harris, R.J., Schütz, G.M.: Fluctuation theorems for stochastic dynamics. J. Stat. Mech.: Theor. Exp. 07, P07020 (2007).

    Google Scholar 

  43. Sekimoto, K.: Stochastic Energetics. Lect. Notes Phys. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  44. Liu, F.: Operator equality on entropy production in quantum Markovian master equations. http://arxiv.org/abs/1210.5798

  45. Liu, F.: Equivalence of two Bochkov-Kuzovlev equalities in quantum two-level systems. http://arxiv.org/abs/1312.6570

Download references

Acknowledgments

We are grateful to Franco Fagnola for providing the proof of the existence of a privileged representation for CPTP maps. JMH is supported by ARO MURI grant W911NF-11-1-0268 and TS by JSPS KAKENHI Grant Nos. 25800217 and 22340114.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordan M. Horowitz.

Appendices

Appendix 1: Time Derivative of Von Neumann Entropy

The derivation of (4) follows by first taking the derivative of the von Neumann entropy \(S(t)=-\mathrm{Tr}[\rho _t\ln \rho _t]\),

$$\begin{aligned} \dot{S}(t) = - \mathrm{Tr}[ \dot{\rho }_t \ln \rho _t ] - \mathrm{Tr}\left[ \rho _t \frac{d}{dt}\ln \rho _t \right] . \end{aligned}$$
(45)

Clearly, (4) is true if the second term is zero. To demonstrate this, we decompose \(\rho _t\) in its time-dependent eigenbasis \(\rho _t = \sum _k P_t^k | k_t \rangle \langle k_t |\), where \(\sum _k P_t^k = 1\) and \(\{ | k_t \rangle \}\) form an orthonormal basis. We then have

$$\begin{aligned} \mathrm{Tr}\left[ \rho _t \frac{d}{dt}\ln \rho _t \right]&= \mathrm{Tr}\left[ \rho _t \sum _k \frac{\dot{P}_t^k }{P_t^k} | k_t \rangle \langle k_t |\right] + \mathrm{Tr}\left[ \rho _t \sum _k \ln P_t^k \frac{d}{dt}| k_t \rangle \langle k_t |\right] \end{aligned}$$
(46)
$$\begin{aligned}&= \sum _k \dot{P}_t^k + \sum _k P_t^k \ln P_t^k \frac{d}{dt}\mathrm{Tr}[| k_t \rangle \langle k_t |] \end{aligned}$$
(47)
$$\begin{aligned}&= 0. \end{aligned}$$
(48)

Appendix 2: Privileged Representation Identity

To verify (28), we first expand the logarithm in its power series about \(I\) and then exploit (19) for the privileged \(L_k\) as

$$\begin{aligned} \ln (\pi _\lambda ) L_k(\lambda )&=\sum _{n=1}^\infty \frac{(-1)^{n+1}}{n}(\pi _\lambda -I)^n L_k(\lambda ) \end{aligned}$$
(49)
$$\begin{aligned}&=L_k(\lambda )\sum _{n=1}^\infty \frac{(-1)^{n+1}}{n}(\varpi _k(\lambda )\pi _\lambda -I)^n \end{aligned}$$
(50)
$$\begin{aligned}&=L_k(\lambda )\ln (\varpi _k(\lambda )\pi _\lambda ). \end{aligned}$$
(51)

It is worth noting that this argument will hold for other functions besides the logarithm as long as they have a power series expansion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horowitz, J.M., Sagawa, T. Equivalent Definitions of the Quantum Nonadiabatic Entropy Production. J Stat Phys 156, 55–65 (2014). https://doi.org/10.1007/s10955-014-0991-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-014-0991-1

Keywords

Navigation