Skip to main content
Log in

Log-periodic Critical Amplitudes: A Perturbative Approach

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Log-periodic amplitudes appear in the critical behavior of a large class of systems, in particular when a discrete scale invariance is present. Here we show how to compute these critical amplitudes perturbatively when they originate from a renormalization map which is close to a monomial. In this case, the log-periodic amplitudes of the subdominant corrections to the leading critical behavior can also be calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Akkermans, E., Benichou, O., Dunne, G.V., Teplyaev, A., Voituriez, R.: Spatial log periodic oscillations of first-passage observables in fractals. arXiv:1207.3298

  2. Akkermans, E., Dunne, G.V., Teplyaev, A.: Physical consequences of complex dimensions of fractals. Europhys. Lett. 88, 40007 (2009)

    Article  ADS  Google Scholar 

  3. Beardon, A.F.: Iteration of Rational Functions. Graduate Texts in Mathematics, vol. 132. Springer, New York (1991)

    Book  MATH  Google Scholar 

  4. Berker, A.N., Ostlund, S.: Renormalisation-group calculations of finite systems: order parameter and specific heat for epitaxial ordering. J. Phys. C 12, 4961–4975 (1979)

    Article  ADS  Google Scholar 

  5. Biggins, J.D., Bingham, N.H.: Near-constancy phenomena in branching processes. Math. Proc. Camb. Philos. Soc. 110, 545–558 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  6. Biggins, J.D., Nadarajah, S.: Near-constancy of the Harris function in the simple branching process. Commun. Stat., Stoch. Models 9, 435–444 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  7. Costin, O., Giacomin, G.: Oscillatory critical amplitudes in hierarchical models and the Harris function of branching processes. J. Stat. Phys. 150, 471–486 (2013)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Costin, O., Huang, M.: Behavior of lacunary series at the natural boundary. Adv. Math. 222, 1370–1404 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  9. Costin, O., Huang, M.: Geometric construction and analytic representation of Julia sets of polynomial maps. Nonlinearity 24, 1311–1327 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. de Bruijn, N.G.: An asymptotic problem on iterated functions. Ned. Akad. Wet., Indag. Math. 41, 105–110 (1979)

    MATH  Google Scholar 

  11. de Calan, C., Luck, J.M., Nieuwenhuizen, T.M., Petritis, D.: On the distribution of a random variable occurring in 1d disordered-systems. J. Phys. A, Math. Gen. 18, 501–523 (1985)

    Article  ADS  Google Scholar 

  12. de Moura, F.A.B.F., Tirnakli, U., Lyra, M.L.: Convergence to the critical attractor of dissipative maps: log-periodic oscillations, fractality, and nonextensivity. Phys. Rev. E 62, 6361–6365 (2000)

    Article  ADS  Google Scholar 

  13. Derrida, B., Hilhorst, H.J.: Singular behavior of certain infinite products of random 2×2 matrices. J. Phys. A 16, 2641–2654 (1983)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  14. Derrida, B., De Seze, L., Itzykson, C.: Fractal structure of zeros in hierarchical models. J. Stat. Phys. 33, 559–569 (1983)

    Article  ADS  Google Scholar 

  15. Derrida, B., Itzykson, C., Luck, J.M.: Oscillatory critical amplitudes in hierarchical models. Commun. Math. Phys. 94, 115–132 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  16. Derrida, B., Hakim, V., Vannimenus, J.: Effect of disorder on two-dimensional wetting. J. Stat. Phys. 66, 1189–1213 (1992)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Derrida, B., Manrubia, S.C., Zanette, D.H.: Distribution of repetitions of ancestors in genealogical trees. Physica A 281, 1–16 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  18. Douçot, B., Wang, W., Chaussy, J., Pannetier, B., Rammal, R., Vareille, A., Henry, D.: First observation of the universal periodic corrections to scaling: magnetoresistance of normal-metal self-similar networks. Phys. Rev. Lett. 57, 1235–1238 (1986)

    Article  ADS  Google Scholar 

  19. Dubuc, S.: Etude théorique et numérique de la fonction de Karlin-McGregor. J. Anal. Math. 42, 15–37 (1982)

    Article  MathSciNet  Google Scholar 

  20. Dunne, G.V.: Heat kernels and zeta functions on fractals. J. Phys. A, Math. Theor. 45, 374016 (2012)

    Article  MathSciNet  Google Scholar 

  21. Giacomin, G., Lacoin, H., Toninelli, F.L.: Hierarchical pinning models, quadratic maps and quenched disorder. Probab. Theory Relat. Fields 147, 185–216 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  22. Giacomin, G., Lacoin, H., Toninelli, F.L.: Marginal relevance of disorder for pinning models. Commun. Pure Appl. Math. 63, 233–265 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  23. Gluzman, S., Sornette, D.: Log-periodic route to fractal functions. Phys. Rev. E 65, 036142 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  24. Grabner, P.J., Woess, W.: Functional iterations and periodic oscillations for simple random walk on the Sierpinski graph. Stoch. Process. Appl. 69, 127–138 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Griffiths, R.B., Kaufman, M.: Spin systems on hierarchical lattices. Introduction and thermodynamic limit. Phys. Rev. B 26, 5022–5032 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  26. Harris, T.E.: Branching processes. Ann. Math. Stat. 41, 474–494 (1948)

    Article  Google Scholar 

  27. Harris, T.E.: The Theory of Branching Processes. Springer, Berlin (1963)

    Book  MATH  Google Scholar 

  28. Karevski, D., Turban, L.: Log-periodic corrections to scaling: exact results for aperiodic Ising quantum chains. J. Phys. A, Math. Gen. 29, 3461–3470 (1996)

    Article  ADS  MATH  Google Scholar 

  29. Karlin, S., McGregor, J.: Embeddability of discrete-time branching processes into continuous-time branching processes. Trans. Am. Math. Soc. 132, 115–136 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  30. Kaufman, M., Griffiths, R.B.: Exactly soluble Ising models on hierarchical lattices. Phys. Rev. B 24, 496–498 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kuczma, M., Choczewski, B., Ger, R.: Iterative Functional Equations. Encyclopedia of Mathematics and Its Applications, vol. 32. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  32. Lessa, J.C., Andrade, R.F.S.: Log-periodic oscillations for a uniform spin model on a fractal. Phys. Rev. E 62, 3083–3089 (2000)

    Article  ADS  Google Scholar 

  33. Milnor, J.: Dynamics in One Complex Variable, 3rd edn. Annals of Mathematics Studies, vol. 160. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  34. Monthus, C., Garel, T.: Critical behavior of interfaces in disordered Potts ferromagnets: statistics of free-energy, energy, and interfacial adsorption. Phys. Rev. B 77, 134416 (2008) (14 p.)

    Article  ADS  MathSciNet  Google Scholar 

  35. Odlyzko, A.M.: Periodic oscillations of coefficients of power series that satisfy functional equations. Adv. Math. 44, 180–205 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  36. Pinsky, M.A.: Introduction to Fourier Analysis and Wavelets. Graduate Studies in Mathematics, vol. 102. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  37. Sornette, D.: Discrete-scale invariance and complex dimensions. Phys. Rep. 297, 239–270 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  38. Stauffer, D., Sornette, D.: Log-periodic oscillations for biased diffusion on random lattice. Physica A 252, 271–277 (1998)

    Article  Google Scholar 

  39. Teufl, E.: On the asymptotic behaviour of analytic solutions of linear iterative functional equations. Aequ. Math. 73, 18–55 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of ANR, grant SHEPI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giambattista Giacomin.

Additional information

Dedicated to Herbert Spohn, our colleague, friend and source of inspiration, on the occasion of his 65th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Derrida, B., Giacomin, G. Log-periodic Critical Amplitudes: A Perturbative Approach. J Stat Phys 154, 286–304 (2014). https://doi.org/10.1007/s10955-013-0774-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-013-0774-0

Keywords

Navigation