Skip to main content
Log in

Do Solids Flow?

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

Are solids intrinsically different from liquids? Must a finite stress be applied in order to induce flow? Or, instead, do all solids only look rigid on some finite timescales and eventually flow if an infinitesimal shear stress is applied? Surprisingly, these simple questions are a matter of debate and definite answers are still lacking. Here we show that solidity is only a time-scale dependent notion: equilibrium states of matter that break spontaneously translation invariance, e.g. crystals, flow if even an infinitesimal stress is applied. However, they do so in a way inherently different from ordinary liquids since their viscosity diverges for vanishing shear stress with an essential singularity. We find an ultra-slow decrease of the shear stress as a function of the shear rate, which explains the apparent yield stress identified in rheological flow curves. Furthermore, we suggest that an alternating shear of frequency ω and amplitude γ should lead to a dynamic phase transition line in the (ω,γ) plane, from a ‘flowing’ to a ‘non-flowing’ phase. Finally, we apply our results to crystals, show the corresponding microscopic process leading to flow and discuss possible experimental investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Edgeworth, R., Dalton, B.J., Parnell, T.: Eur. J. Phys. 198 (1984). See also http://www.smp.uq.edu.au/pitch/

  2. Barnes, H.A.: J. Non-Newtonian Fluid. Mech. 81, 133 (1999)

    Article  MATH  Google Scholar 

  3. Chaikin, P.M., Lubensky, T.C.: Principles of Condensed Matter Physics. Cambridge Univ. Press, Cambridge (1995)

    Google Scholar 

  4. Anderson, P.W.: Basic Notion of Condensed Matter Physics. Westview Press, Boulder (1997)

    Google Scholar 

  5. Balibar, S., Alles, H., Parshin, A.Ya.: Rev. Mod. Phys. 77, 317 (2005)

    Article  ADS  Google Scholar 

  6. Pantalei, C., Rojas, X., Edwards, D.O., Balibar, S.: J. Low Temp. Phys. (2010). doi:10.1007/s10909-010-0159-6

    Google Scholar 

  7. Noda, A., Kohiro, K., Oda, O.: J. Electron. Mater. 25, 1841 (1996)

    Article  ADS  Google Scholar 

  8. Hirth, J.P., Lothe, J.: Theory of Dislocations. McGraw-Hill, New York (1968)

    Google Scholar 

  9. Duez, C., Ybert, C., Clanet, C., Bocquet, L.: Nat. Phys. 3, 180 (2007)

    Article  Google Scholar 

  10. Debenedetti, P.G.: Metastable Liquids. Princeton University Press, Princeton (1996)

    Google Scholar 

  11. Langer, J.S., Ambegaokar, V.: Phys. Rev. 164, 498 (1967)

    Article  ADS  Google Scholar 

  12. Langer, J.S., Fisher, M.E.: Phys. Rev. Lett. 19, 560 (1967)

    Article  ADS  Google Scholar 

  13. Buchel, A., Sethna, J.P.: Phys. Rev. Lett. 77, 1520 (1996)

    Article  ADS  Google Scholar 

  14. Bruinsma, R., Halperin, B.I., Zippelius, A.: Phys. Rev. B 25, 579 (1982)

    Article  ADS  Google Scholar 

  15. Dahm, A.J., Stan, M.A., Petschek, R.G.: Phys. Rev. B 40, 9006 (1989)

    Article  ADS  Google Scholar 

  16. Lyuksyutov, I.F., Pokrovsky, V., Nattermann, T.: Phys. Rev. B 59, 4260 (1998)

    Article  ADS  Google Scholar 

  17. Barnes, H.A., Hutton, J.F., Walters, K.: An Introduction to Rheology. Elsevier, Amsterdam (1993)

    Google Scholar 

  18. Bavaud, F., Choquard, Ph., Fontaine, J.R.: J. Stat. Phys. 42, 621 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  19. Williams, S.R., Evans, D.J.: J. Chem. Phys. 131, 024115 (2009)

    Article  ADS  Google Scholar 

  20. Schall, P., Cohen, I., Weitz, D.A., Spaepen, F.: Nature 440, 319 (2006)

    Article  ADS  Google Scholar 

  21. Bray, A.J.: Adv. Phys. 43, 357 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  22. Hébraud, P., Lequeux, F.: Phys. Rev. Lett. 81, 2934 (1998)

    Article  ADS  Google Scholar 

  23. Bocquet, L., Colin, A., Ajdari, A.: Phys. Rev. Lett. 103, 036001 (2009)

    Article  ADS  Google Scholar 

  24. Sausset, F., Biroli, G., Kurchan, J.: in preparation

  25. Liu, A.J., Nagel, S.R.: Nature 396, 21 (1998)

    Article  ADS  Google Scholar 

  26. Korniss, G., White, C.J., Rikvold, P.A., Novotny, M.A.: Phys. Rev. E 63, 016120 (2001)

    Article  ADS  Google Scholar 

  27. Lothe, J., Hirth, J.P.: Phys. Rev. 115, 543 (1959)

    Article  MATH  ADS  Google Scholar 

  28. Mézard, M., Yoshino, H.: arXiv:1003.3039

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sausset.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sausset, F., Biroli, G. & Kurchan, J. Do Solids Flow?. J Stat Phys 140, 718–727 (2010). https://doi.org/10.1007/s10955-010-0006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-010-0006-9

Keywords

Navigation