Skip to main content
Log in

A New Method for the Solution of Models of Biological Evolution: Derivation of Exact Steady-State Distributions

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

We investigate well-known models of biological evolution and address the open problem of how construct a correct continuous analog of mutations in discrete sequence space. We deal with models where the fitness is a function of a Hamming distance from the reference sequence. The mutation-selection master equation in the discrete sequence space is replaced by a Hamilton-Jacobi equation for the logarithm of relative frequencies of different sequences. The steady-state distribution, mean fitness and the variance of fitness are derived. All our results are asymptotic in the large genome limit. A variety of important biological and biochemical models can be solved by this new approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Wright, Proceedings of the sixth International Congress on Genetics 1:356 (1932).

  2. E. Baake, M. Baake and H. Wagner, Phys. Rev. Lett. 78:559 (1997).

    Article  ADS  Google Scholar 

  3. S. Wright, Proc. Natl. Acad. Sci. USA 31:382 (1945).

    Article  MATH  ADS  Google Scholar 

  4. M. Kimura, The Neutral Theory of Molecular Evolution (Cambridge University Press, Cambridge, 1983).

  5. L.S. Tsimring, H. Levin and D. A. Kessler, Phys. Rev. Lett. 76:4440 (1996).

    Article  ADS  Google Scholar 

  6. F. Bagnoli and M. Bezzi, Phys. Rev. Lett. 79:3302 (1997).

    Article  ADS  Google Scholar 

  7. U. Gerland and T. Hwa, J. Mol. Evol. 55:386 (2002).

    Article  Google Scholar 

  8. W. Peng, U. Gerland, T. Hwa and H. Levin, Phys. Rev. Lett. 90:088103 (2003).

    Article  ADS  Google Scholar 

  9. N. M. Shnerb, Y. Louzoun, E. Bettelheim and S. Solomon, Proc. Natl. Acad. Sci. USA 97:10322 (2000).

    Article  MATH  ADS  Google Scholar 

  10. M. Eigen, Naturwissenschaften 58:465 (1971).

    Article  Google Scholar 

  11. M. Eigen, J. McCaskill and P. Schuster, Adv. Chem. Phys. 75:149 (1989).

    Article  Google Scholar 

  12. M. Eigen and C. Biebricher, Virus Research 107:117 (2005).

    Article  Google Scholar 

  13. J. F. Crow and M. Kimura, An Introduction to Population Genetics Theory (Harper Row, NY, 1970).

  14. E. Baake and H. Wagner, Genet. Res. 78:93 (2001).

    Article  Google Scholar 

  15. D. B. Saakian and C.-K. Hu, Phys. Rev. E 69:021913 (2004).

    Article  ADS  Google Scholar 

  16. D. B. Saakian and C.-K. Hu, Phys. Rev. E 69:046121 (2004).

    Article  ADS  Google Scholar 

  17. D. B. Saakian, H. Khachatryan and C.-K. Hu, Phys. Rev. E 70:041908 (2004).

    Article  ADS  Google Scholar 

  18. E. Baake, M. Baake and A. Bover, J. Math. Biol. 50:83 (2005).

    Article  MATH  Google Scholar 

  19. D. B. Saakian and C.-K. Hu, Proc. Natl. Acad. Sci. USA 109:4935 (2006).

    Article  ADS  Google Scholar 

  20. D. B. Saakian, E. Munoz, C.-K. Hu and M. W. Deem, Phys. Rev. E 73:041913 (2006).

    Article  ADS  Google Scholar 

  21. C. J. Thompson and J. L. McBride, Mathematical Biosciences 21:127 (1974).

    Article  MATH  Google Scholar 

  22. B. L. Jones, R. H. Enns, and R. S. Rangnekar, Bull. Math. Biol. 38:15 (1975).

    Google Scholar 

  23. J. Swetina and P. Schuster,Biophys. Chem. 16:329 (1982).

    Article  Google Scholar 

  24. D. M. Weinreich, N. F. Delaney, M. A. DePristo and D. L. Hartl, Science 312:111 (2006).

    Article  ADS  Google Scholar 

  25. Kun, A., Santos, M., and Szathmáry, E., Nature Genetics, 37:1008–1011 (2005)

    Article  Google Scholar 

  26. J. Berg, S. Willmann and M. Lassig, BMC Evolutionary Biology 4:42 (2004).

    Article  Google Scholar 

  27. J. Hermisson, M. Baake and H. Wagner, J. Stat. Phys. 102:315 (2001).

    Article  MATH  Google Scholar 

  28. B. Drossel, Advances in Physics 50:209 (2001).

    Article  ADS  Google Scholar 

  29. W. Li, Phys. Rev. A 43:5240 (1991).

    Article  ADS  Google Scholar 

  30. P. W. Messer, P. F. Arndt and M. Lassig, Phys. Rev. Lett. 94:138103 (2005).

    Article  ADS  Google Scholar 

  31. M. Lassig, L. Peliti and F. Tria, Europhys. Lett. 62:446 (2003)

    Article  ADS  Google Scholar 

  32. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (North Holland, Amstersdam, NY, 2001).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Saakian.

Additional information

PACS numbers: 87.10.+e, 87.15.Aa, 87.23.Kg, 02.50.-r

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saakian, D.B. A New Method for the Solution of Models of Biological Evolution: Derivation of Exact Steady-State Distributions. J Stat Phys 128, 781–798 (2007). https://doi.org/10.1007/s10955-007-9334-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-007-9334-9

Key Words

Navigation