Skip to main content
Log in

Onsager-Machlup Theory for Nonequilibrium Steady States and Fluctuation Theorems

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Abstract

A generalization of the Onsager-Machlup theory from equilibrium to nonequilibrium steady states and its connection with recent fluctuation theorems are discussed for a dragged particle restricted by a harmonic potential in a heat reservoir. Using a functional integral approach, the probability functional for a path is expressed in terms of a Lagrangian function from which an entropy production rate and dissipation functions are introduced, and nonequilibrium thermodynamic relations like the energy conservation law and the second law of thermodynamics are derived. Using this Lagrangian function we establish two nonequilibrium detailed balance relations, which not only lead to a fluctuation theorem for work but also to one related to energy loss by friction. In addition, we carried out the functional integral for heat explicitly, leading to the extended fluctuation theorem for heat. We also present a simple argument for this extended fluctuation theorem in the long time limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. 1. A. Einstein, Ann. Physik 17:549 (1905).

    Article  ADS  Google Scholar 

  2. 2. J. B. Johnson, Phys. Rev. 32:97 (1928).

    Article  ADS  Google Scholar 

  3. 3. H. Nyquist, Phys. Rev. 32:110 (1928).

    Article  ADS  Google Scholar 

  4. 4. L. Onsager, Phys. Rev. 37:405 (1931).

    Article  MATH  ADS  Google Scholar 

  5. 5. L. Onsager, Phys. Rev. 38:2265 (1931).

    Article  MATH  ADS  Google Scholar 

  6. 6. H. B. G. Casimir, Rev. Mod. Phys. 17:343 (1945).

    Article  ADS  Google Scholar 

  7. 7. M. S. Green, J. Chem. Phys. 19:1036 (1951).

    Article  ADS  MathSciNet  Google Scholar 

  8. 8. H. B. Callen and T. A. Welton Phys. Rev. 83:34 (1951).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. 9. R. Kubo, J. Phys. Soc. Jap. 12:570 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  10. 10. N. Hashitsume, Prog. Theor. Phys. 8:461 (1952).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  11. 11. L. Onsager and S. Machlup, Phys. Rev. 91:1505 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. 12. S. Machlup and L. Onsager, Phys. Rev. 91:1512 (1953).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. 13. H. Hasegawa, Prog. Theor. Phys. 56:44 (1976).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. 14. H. Hasegawa, Prog. Theor. Phys. 58:128 (1977).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. 15. K. Yasue, J. Math. Phys. 19:1671 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  16. 16. K. L. C. Hunt and J. Ross, J. Chem. Phys. 75:976 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  17. 17. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications (Springer-Verlag Berlin, 1989).

    MATH  Google Scholar 

  18. 18. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, Phys. Rev. Lett. 87:040601 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  19. 19. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, J. Stat. Phys. 107:635 (2002).

    Article  MATH  Google Scholar 

  20. 20. L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio and C. Landim, J. Stat. Phys. 123:237 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  21. 21. G. Gallavotti, Ann. Inst. Henri Poincaré 70:429 (1999).

    MATH  MathSciNet  Google Scholar 

  22. 22. G. Gallavotti, Mathematical Physics 2000 (Imperial Colledge Press, London, 2000), p. 48.

    Google Scholar 

  23. 23. G. Gallavotti, cond-mat/0606690; ibid. in Foundations of Fluid Mechanics (Springer-Verlag, Berlin, 2002), Section 7.3.4.

    Google Scholar 

  24. 24. D. J. Evans, E. G. D. Cohen and G. P. Morriss, Phys. Rev. Lett. 71:2401 (1993); 71:3616 (1993) [errata].

    Article  MATH  ADS  Google Scholar 

  25. 25. D. J. Evans and D. J. Searles, Phys. Rev. E 50:1645 (1994).

    Article  ADS  Google Scholar 

  26. 26. G. Gallavotti and E. G. D. Cohen, Phys. Rev. Lett. 74:2694 (1995); J. Stat. Phys. 80:931 (1995).

    Article  ADS  Google Scholar 

  27. 27. J. Kurchan, J. Phys. A: Math. Gen. 31:3719 (1998).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. 28. J. L. Lebowitz and H. Spohn, J. Stat. Phys. 95:333 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  29. 29. G. E. Crooks, Phys. Rev. E 60:2721 (1999).

    Article  ADS  Google Scholar 

  30. 30. G. E. Crooks, Phys. Rev. E 61:2361 (2000).

    Article  ADS  Google Scholar 

  31. 31. S. Ciliberto and C. Laroche, J. Phys. IV France 8:215 (1998).

    Article  Google Scholar 

  32. 32. G. M. Wang, E. M. Sevick, E. Mittag, D. J. Searles and D. J. Evans, Phys. Rev. Lett. 89:050601 (2002).

    Article  ADS  Google Scholar 

  33. 33. S. Ciliberto, N. Garnier, S. Hernandez, C. Lacpatia, J.-F. Pinton, G. R. Chavarria, Physica A 340:240 (2004).

    Article  ADS  Google Scholar 

  34. 34. K. Feitosa and N. Menon, Phys. Rev. Lett. 92:164301 (2004).

    Article  ADS  Google Scholar 

  35. 35. N. Garnier and S. Ciliberto, Phys. Rev. E 71:060101R (2005).

    Article  ADS  Google Scholar 

  36. 36. S. Schuler, T. Speck, C. Tietz, J. Wrachtrup and U. Seifert, Phys. Rev. Lett. 94:180602 (2005).

    Article  ADS  Google Scholar 

  37. 37. G. Gallavotti, Phys. Rev. Lett. 77:4334 (1996);

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. 38. G. Gallavotti and D. Ruelle, Commun. Math. Phys. 190:279 (1997).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  39. 39. R. van Zon and E. G. D. Cohen, Phys. Rev. Lett. 91:110601 (2003).

    Article  Google Scholar 

  40. 40. R. van Zon and E. G. D. Cohen, Phys. Rev. E 69:056121 (2004).

    Article  ADS  Google Scholar 

  41. 41. K. Sekimoto, Prog. Theor. Phys. Suppl. 130:17 (1998).

    Article  ADS  Google Scholar 

  42. 42. O. Mazonka and C. Jarzynski, e-print cond-mat/9912121.

  43. 43. S. Tasaki, I. Terasaki and T. Monnai, e-print cond-mat/0208154.

  44. 44. R. van Zon and E. G. D. Cohen, Phys. Rev. E 67:046102 (2003).

    Article  ADS  Google Scholar 

  45. 45. R. van Zon, S. Ciliberto and E. G. D. Cohen, Phys. Rev. Lett. 92:130601 (2004).

    Article  Google Scholar 

  46. 46. T. Taniguchi and G. P. Morriss, Phys. Rev. E 70:056124 (2004).

    Article  ADS  Google Scholar 

  47. 47. N. G. van Kampen, Stochastic Processes in Physics and Chemistry (Elsevier, Amsterdam, 1992).

    Google Scholar 

  48. 48. L. Tisza and I. Manning, Phys. Rev. 105:1695 (1957).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  49. 49. L. D. Landau and E. M. Lifshitz, Mechanics, translated from the Russian by J. B. Sykes and J. S. Bell (Pergamon Press, Oxford, 1960).

    Google Scholar 

  50. 50. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).

    MATH  Google Scholar 

  51. 51. L. D. Landau and E. M. Lifshitz, Statistical Physics, translated from the Russian by E. Peierls and R. F. Peierls (Pergamon Press, London, 1958) Chapter XII.

    Google Scholar 

  52. 52. D. J. Evans and D. J. Searles, Adv. Phys. 51:1529 (2002).

    Article  ADS  Google Scholar 

  53. 53. E. G. D. Cohen and G. Gallavotti, J. Stat. Phys. 96:1343 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  54. 54. J. C. Reid, D. M. Carberry, G. M. Wang, E. M. Sevick, and D. J. Evans, Phys. Rev. E 70:016111 (2004).

    Article  ADS  Google Scholar 

  55. 55. F. Bonetto, G. Gallavotti, A. Giuliani, and F. Zamponi, J. Stat. Phys. 123:39 (2006).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. 56. T. Gilbert, Phys. Rev. E 73:035102R (2006).

    Article  ADS  Google Scholar 

  57. 57. M. Baiesi, T. Jacobs, C. Maes and N. S. Skantzos, Phys. Rev. E 74:021111 (2006).

    Article  ADS  Google Scholar 

  58. 58. V. Y. Chernyak, M. Chertkov, and C. Jarzynski, J. Stat. Mech. 8:08001 (2006).

    Article  Google Scholar 

  59. 59. O. Narayan and A. Dhar, J. Phys. A: Math. Gen. 37:63 (2004).

    Article  MATH  ADS  MathSciNet  Google Scholar 

  60. 60. K. Kitahara, private communication.

  61. 61. A. Imparato and L. Peliti, Phys. Rev. E 74:026106 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  62. 62. K. Kawasaki and B. Kim, J. Stat. Phys. 109:591 (2002).

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tooru Taniguchi.

Additional information

PACS numbers: 05.70.Ln, 05.40.-a, 05.10.Gg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taniguchi, T., Cohen, E.G.D. Onsager-Machlup Theory for Nonequilibrium Steady States and Fluctuation Theorems. J Stat Phys 126, 1–41 (2007). https://doi.org/10.1007/s10955-006-9252-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-006-9252-2

Keywords

Navigation