Skip to main content
Log in

Accelerated Monte Carlo for Optimal Estimation of Time Series

  • Published:
Journal of Statistical Physics Aims and scope Submit manuscript

Asbstract

By casting stochastic optimal estimation of time series in path integral form, one can apply analytical and computational techniques of equilibrium statistical mechanics. In particular, one can use standard or accelerated Monte Carlo methods for smoothing, filtering and/or prediction. Here we demonstrate the applicability and efficiency of generalized (nonlocal) hybrid Monte Carlo and multigrid methods applied to optimal estimation, specifically smoothing. We test these methods on a stochastic diffusion dynamics in a bistable potential. This particular problem has been chosen to illustrate the speedup due to the nonlocal sampling technique, and because there is an available optimal solution which can be used to validate the solution via the hybrid Monte Carlo strategy. In addition to showing that the nonlocal hybrid Monte Carlo is statistically accurate, we demonstrate a significant speedup compared with other strategies, thus making it a practical alternative to smoothing/filtering and data assimilation on problems with state vectors of fairly large dimensions, as well as a large total number of time steps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • B. Eraker (2001) ArticleTitleMCMC analysis of diffusion processes with application to finance J. Bus. Econ. Stati. 19 IssueID2 177–191 Occurrence Handle10.1198/073500101316970403

    Article  Google Scholar 

  • J.C. Hargreaves JD. Annan (2002) ArticleTitleAssimilation of paleo-data in a simple earth system model Clim. Dynam. 19 371–381 Occurrence Handle10.1007/s00382-002-0241-0

    Article  Google Scholar 

  • C. Wunsch (1996) The Ocean Circulation Inverse Problem Cambridge University Press Cambridge, UK

    Google Scholar 

  • E. Kalnay (2003) Atmospheric Modeling, Data Assimilation and Predictability Cambridge University Press Cambridge

    Google Scholar 

  • J. Liu C. Sabatti (1998) ArticleTitleSimulated sintering: MCMC with spaces of varying dimensions Bayesian Stat 6 386–413

    Google Scholar 

  • J. Liu C. Sabatti (2000) ArticleTitleGeneralized Gibbs sampler and multigrid Monte Carlo for Bayesian computation Biometrika 87 353–369 Occurrence Handle10.1093/biomet/87.2.353

    Article  Google Scholar 

  • H. Sorensen (2004) ArticleTitleParametric inference for diffusion processes observed at discrete points in time: A survey Internat. Statist. Rev. 72 IssueID3 337–354

    Google Scholar 

  • WR. Gilks S. Richardson D.J. Spiegelhalter (Eds) (1996) Markov Chain Monte Carlo in Practice Chapman and Hall New York

    Google Scholar 

  • Chen, Bayesian filtering: From Kalman filters to particle filters and beyond, McMaster University Technical Report, 2003

  • JS. Liu (2001) Monte Carlo Strategies in Scientific Computing Springer New York

    Google Scholar 

  • ChenM-H. Q-M. Shao JG. Ibrahim (2000) Monte Carlo Methods in Bayesian Computation Springer-Verlag New York, Berlin

    Google Scholar 

  • B. Pendleton S. Duane A.D. Kennedy D. Roweth (1987) ArticleTitleHybrid Monte Carlo Phys. Lett. B. 195 216–222 Occurrence Handle10.1016/0370-2693(87)91197-X

    Article  Google Scholar 

  • Neal RM., Probabilistic inference using Markov chain Monte Carlo methods, Technical Report CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993

  • R. Toral AL. Ferreira (1994) ArticleTitleA general class of hybrid Monte Carlo methods Proceedings of Physics Computing. 94 265–268

    Google Scholar 

  • A.D. Kennedy B. Pendelton (2001) ArticleTitleCost of the generalised hybrid Monte Carlo algorithm for free field theory Nucl. Phys. B. B 607 456–510 Occurrence Handle10.1016/S0550-3213(01)00129-8

    Article  Google Scholar 

  • R. Salazar R. Toral (1997) ArticleTitleSimulated annealing using hybrid Monte Carlo J. Stat. Phys. 89 1047–1060

    Google Scholar 

  • R. Salazar R. Toral (1997) ArticleTitleHybrid simulated annealing J. Stat. Phys. 89 1047

    Google Scholar 

  • A. Gelb (1974) Applied Optimal Estimation MIT Press Cambridge, MA

    Google Scholar 

  • H. Tanizaki (1996) Nonlinear Filters: Estimation and Applications Springer-Verlag New York

    Google Scholar 

  • P. Del Moral (2004) Feynman-Kac Formulae Springer-Verlag New York

    Google Scholar 

  • A. Doucet N. deFreitas N. Gordon (2002) Sequential Monte Carlo Methods in Practice Springer-Verlag New York

    Google Scholar 

  • RL. Stratonovich (1960) ArticleTitleConditional Markov processes Theor. Prob. Appl. 5 156–178 Occurrence Handle10.1137/1105015

    Article  Google Scholar 

  • HJ. Kushner (1962) ArticleTitleOn the differential equations satisfied by conditional probability densities of Markov processes, with applications J. SIAM Control Ser.A. 2 106–119 Occurrence Handle10.1137/0302009

    Article  Google Scholar 

  • HJ. Kushner (1967) ArticleTitleDynamical equations for optimal nonlinear filtering J. Diff. Eq. 3 179–190A Occurrence Handle10.1016/0022-0396(67)90023-X

    Article  Google Scholar 

  • E. Pardoux (1982) ArticleTitle’Equations du filtrage non linéla préet du lissage Stochastics 6 193–231

    Google Scholar 

  • GL. Eyink JM. Restrepo FJ. Alexander (2004) A mean field approximation in data assimilation for nonlinear dynamics Physica D 194 347–368

    Google Scholar 

  • P. Kloeden E. Platen (1992) Numerical Solution of Stochastic Differential Equations Springer-Verlag Berlin

    Google Scholar 

  • F. Langouche D. Roeckaerts E. Tirapegui (1978) ArticleTitleOn the most probable path for diffusion processes J. Phys. A 11 L263–L268

    Google Scholar 

  • R. Graham (1977) ArticleTitlePath integral formulation of general diffusion processes Zeitschrift fur Physik 26 281–290 Occurrence Handle10.1007/BF01312935

    Article  Google Scholar 

  • F. Langouche D. Roeckaerts E. Tirapegui (1979) ArticleTitleFunctional integral methods for stochastic fields Physica 95 252–274

    Google Scholar 

  • A. Thomas Severini (2001) Likelihood Methods in Statistics Oxford University Press New York

    Google Scholar 

  • O. Talagrand P. Courtier (1987) ArticleTitleVariational assimilation of meteorological observations with the adjoint vorticity equation. I: Theory Quart. J. Roy. Meteor. Soc. 113 1311–1328 Occurrence Handle10.1256/smsqj.47811

    Article  Google Scholar 

  • J. Goodman AD. Sokal (1989) ArticleTitleMultigrid Monte Carlo method. Conceptual foundations Phys. Rev. D 40 2035–2071 Occurrence Handle10.1103/PhysRevD.40.2035

    Article  Google Scholar 

  • R.H. Swendsen JS. Wang (1987) ArticleTitleNonuniversal critical dynamics in Monte Carlo simulations Phys. Rev. Lett. 58 86–88 Occurrence Handle10.1103/PhysRevLett.58.86 Occurrence Handle10034599

    Article  PubMed  Google Scholar 

  • E. Domany D. Kandel (1991) ArticleTitleGeneral cluster Monte Carlo dynamics Phys. Rev. B 43 8539 Occurrence Handle10.1103/PhysRevB.43.8539

    Article  Google Scholar 

  • GG. Batrouni GR. Katz AS. Kronfeld GP. Lepage B. Svetitsky KG. Wilson (1985) ArticleTitleLangevin simulations of lattice field theories Phys. Rev. D 32 2736–2747 Occurrence Handle10.1103/PhysRevD.32.2736

    Article  Google Scholar 

  • Alexander FJ., Boghosian BM., Brower RC., Kimura SR. (2001). Fourier acceleration of langevin molecular dynamics. Phys. Rev. E 066704

  • S. Caterall S. Karamov (2002) ArticleTitleTesting a Fourier accelerated hybrid Monte Carlo algorithm Phys. Lett. B B 528 301–305 Occurrence Handle10.1016/S0370-2693(02)01217-0

    Article  Google Scholar 

  • R. Toral A. Ferreira (1993) ArticleTitleHybrid Monte Carlo method for conserved-order-parameter systems Phys. Rev. E 47 3848–3851 Occurrence Handle10.1103/PhysRevE.47.4240

    Article  Google Scholar 

  • RN. Miller M.Ghil P. Gauthiez (1994) ArticleTitleAdvanced data assimilation in strongly non-linear dynamical systems J. Atmos. Sci. 51 1037–1056 Occurrence Handle10.1175/1520-0469(1994)051<1037:ADAISN>2.0.CO;2

    Article  Google Scholar 

  • G.L. Eyink JR. Restrepo (2000) ArticleTitleMost probable histories for nonlinear dynamics: Tracking climate transitions J. Stat. Phys. 101 459–472 Occurrence Handle10.1023/A:1026437432570

    Article  Google Scholar 

  • Godsill S., Doucet A., West M. (2001). Monte carlo smoothing for non-linear time series. URL: citeseer.ist.psu.edu/godsill01monte.html

  • Eyink GL., Restrepo JM., and Alexander FJ., Reducing computational complexity using closures in a mean field approach in data assimilation, submitted (2002)

  • A. Bennett (2002) Inverse Modeling of the Ocean and Atmosphere Cambridge University Press Cambridge, UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francis J. Alexander.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexander, F.J., Eyink, G.L. & Restrepo, J.M. Accelerated Monte Carlo for Optimal Estimation of Time Series. J Stat Phys 119, 1331–1345 (2005). https://doi.org/10.1007/s10955-005-3770-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10955-005-3770-1

Keywords

Navigation