Skip to main content
Log in

Thermodynamics and Activity Coefficients at Infinite Dilution for Organic Solutes in Trialkyl-Substituted Imidazolium-Based Ionic Liquid 1-Propyl-2,3-dimethylimidazolium Thiocyanate

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This work is a continuation of our studies on the determination of activity coefficients at infinite dilution (\({\gamma }_{i}^{\infty }\)) for organic solutes (\(i\)) in ionic liquids (ILs). New sets of experimental data for 32 organic solutes (alkanes, alkenes, aromatics, chlorinated alkanes, alcohols, and other polar organic solutes) in trialkyl-substituted imidazolium-based IL 1-propyl-2,3-dimethylimidazolium thiocyanate ([PMMIM][SCN]) in the temperature range of 313.15–363.15 K were measured by gas–liquid chromatography (GLC). The partial molar excess enthalpies at infinite dilution (\({\overline{H} }_{i}^{\mathrm{E},\infty }\)), entropies (\({T}_{\mathrm{ref}}{\overline{S} }_{i}^{\mathrm{E},\infty }\)), and Gibbs free energies (\({\overline{G} }_{i}^{\mathrm{E},\infty }\)) of organic solutes in [PMMIM][SCN] at a reference temperature \({T}_{\mathrm{ref}}\) = 298.15 K were obtained from the \({\gamma }_{i}^{\infty }\) values. The density of [PMMIM][SCN] as a function of temperature at pressure \(p\) = 101.33 kPa was measured and gas–liquid partition coefficients (\({K}_{\mathrm{L}}\)) were calculated. Moreover, the Hildebrand’s solubility parameters of [PMMIM][SCN] were determined by the regular solution theory (RST) combined with Flory “combinatorial” equation. The selectivity (\({S}_{ij}^{\infty }\)) of [PMMIM][SCN] for n-hexane/benzene, cyclohexane/benzene, and the capacity (\({k}_{j}^{\infty }\)) at infinite dilution of benzene have been determined at T = 323.15 K and compared with literature data of [PDMIM][BF4], [PMMIM][NTf2], and of several ILs with thiocyanate anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Greaves, T.L., Drummond, C.: Protic ionic liquids: evolving structure-property relationships and expanding applications. Chem. Rev. 115, 11379–11448 (2015)

    Article  CAS  Google Scholar 

  2. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  CAS  Google Scholar 

  3. Kasprzak, D., Krystkowiak, E., Stępniak, I., Galiński, M.: Dissolution of cellulose in novel carboxylate-based ionic liquids and dimethyl sulfoxide mixed solvents. Eur. Polym. J. 113, 89–97 (2019)

    Article  CAS  Google Scholar 

  4. Ge, M., Xiong, J., Wang, L.: Theoretical predicting for the infinite dilution activity coefficients of organic compounds in ionic liquids. Chin. Sci Bull. 54, 2225–2229 (2009)

    Article  CAS  Google Scholar 

  5. Sobota, M., Dohnal, V., Vrbka, P.: Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-ethyl-3-methyl-imidazolium nitrate. J. Phys. Chem. B 113, 4323–4332 (2009)

    Article  CAS  Google Scholar 

  6. Królikowski, M., Królikowska, M., Markowski, C.: The investigation of the infinite dilution activity coefficients for molecular compounds in 1-(3-hydroxypropyl)-3-methyl-imidazolium thiocyanate. J. Chem. Thermodyn. 161, 106554 (2021)

    Article  Google Scholar 

  7. Heintz, A., Vasiltsova, T.V., Safarov, J., Bich, E., Verevkin, S.P.: Thermodynamic properties of mixtures containing ionic liquids. 9. Activity coefficients at infinite dilution of hydrocarbons, alcohols, esters, and aldehydes in trimethyl-butylammonium bis(trifluoromethylsulfonyl)imide using gas-liquid chromatography and static method. J. Chem. Eng. Data 51, 648–655 (2006)

    Article  CAS  Google Scholar 

  8. Domańska, U., Królikowska, M.: Measurements of activity coefficients at infinite dilution in solvent mixtures with thiocyanate-based ionic liquids using GLC technique. J. Phys. Chem. B. 114, 8460–8466 (2010)

    Article  Google Scholar 

  9. Ge, M.L., Lu, C.Y., Liu, X.Y., Li, X.B., Chen, J.Y., Xiong, J.M.: Activity coefficients at infinite dilution of alkanes, alkenes, alkyl benzenes in dimethylphosphate based ionic liquids using gas-liquid chromatography. J. Chem. Thermodyn. 91, 279–285 (2015)

    Article  CAS  Google Scholar 

  10. Mutelet, F., Jaubert, J.N.: Accurate measurements of thermodynamic properties of solutes in ionic liquids using inverse gas chromatography. J. Chromatogr. A 1102, 256–267 (2006)

    Article  CAS  Google Scholar 

  11. Foco, G., Bermejo, D., Kotlewska, A.J., Rantwijk, F., Peters, C.J., Bottini, S.B.: Activity coefficients at infinite dilution in methylimidazolium nitrate ionic liquids. J. Chem. Eng. Data 56, 517–520 (2011)

    Article  CAS  Google Scholar 

  12. Andriyko, Y.O., Reischl, W., Nauer, G.E.: Trialkyl-substituted imidazolium-based ionic liquids for electrochemical applications: basic physicochemical properties. J. Chem. Eng. Data 54, 855–860 (2009)

    Article  CAS  Google Scholar 

  13. Zhang, Q.G., Xu, T.T., Zhang, X.Y., Yang, H.G., Zhang, W.B.: The thermodynamic and excess properties of trialkyl-substituted imidazolium-based ionic liquids with thiocyanate and its binary systems with acetonitrile. J. Chem. Eng. Data 63, 1408–1418 (2018)

    Article  CAS  Google Scholar 

  14. Endo, T., Kato, T., Nishikawa, K.: Effects of methylation at the 2 position of the cation ring on phase behaviors and conformational structures of imidazolium-based ionic liquids. J. Phys. Chem. B 114, 9201–9208 (2010)

    Article  CAS  Google Scholar 

  15. García, S., Larriba, M., García, J., Torrecilla, J.S., Rodríguez, F.: 1-Alkyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids for the liquid-liquid extraction of toluene from heptane. J. Chem. Eng. Data 56, 3468–3474 (2011)

    Article  Google Scholar 

  16. Wang, M.H., Wu, J.S., Wang, L.S., Li, M.Y.: Activity coefficients at infinite dilution of alkanes, alkenes, and alkyl benzenes in 1-propyl-2,3-dimethylimidazolium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 52, 1488–1491 (2007)

    Article  CAS  Google Scholar 

  17. Ge, M.L., Wu, J.S., Wang, M.H., Wang, L.S.: Activity coefficients at infinite dilution of polar solutes in 1-propyl-2,3-dimethylimidazolium tetrafluoroborate using gas-liquid chromatography. J. Chem. Eng. Data 53, 871–873 (2008)

    Article  CAS  Google Scholar 

  18. He, Z.Z., Li, R.Q., Sun, A.L., Mu, Z., Xiao, Y.L., Chang, H.W., Jiao, Y.H., Ge, M.L.: Experimental and theoretical study on infinite dilution activity coefficients of various solutes in ionic liquid 1-propyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 140, 105894 (2020)

    Article  CAS  Google Scholar 

  19. Ge, M.L., Zhang, Q., Li, S.N., Li, Y.J., Zhang, X.Z., Mu, Z.: Thermodynamics and activity coefficients at infinite dilution for organic solutes in the ionic liquid 1-hexyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 102, 303–309 (2016)

    Article  CAS  Google Scholar 

  20. He, Z.Z., Zhai, J.Y., Mu, H., Zhang, M., Jiao, Y.H., Ge, M.L.: Thermodynamics and selectivity of separation based on activity coefficients at infinite dilution of various solutes in ionic liquid [HMMIM][BF4]. J. Chem. Thermodyn. 125, 142–148 (2018)

    Article  CAS  Google Scholar 

  21. Chen, J.Y., Kang, R.X., He, Z.Z., Zhang, M., Ge, M.L.: Separation of binary mixtures based on gamma infinity data using [OMMIM][NTf2] ionic liquid and modelling of thermodynamic functions. J. Chem. Thermodyn. 119, 26–33 (2018)

    Article  CAS  Google Scholar 

  22. He, Z.Z., Zhang, M., Ge, M.L., Jiao, Y.H., Mu, Z., Yi, Y.F., Ding, F.C.: Separation of binary mixtures based on gamma infinity data using [OMMIM][BF4] ionic liquid and modelling of thermodynamic functions. J. Chem. Thermodyn. 129, 22–29 (2019)

    Article  CAS  Google Scholar 

  23. Domańska, U., Królikowska, M.: Density and viscosity of binary mixtures of thiocyanate ionic liquids + water as a function of temperature. J. Solution Chem. 41, 1422−1445 (2012)

  24. Domańska, U., Królikowska, M.: Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem.Thermodyn. 41, 645−650 (2009)

  25. Instruction Manual DMA4100, 4500, 5000. Anton Paar Gmb H, Austria (2016)

  26. Ge, M.L., Wang, L.S., Li, M.Y., Wu, J.S.: Activity coefficients at infinite dilution of alkanes, alkenes, and alkyl benzenes in 1-butyl-3-methylimidazolium trifluoromethanesulfonate using gas-liquid chromatography. J. Chem. Eng. Data 52, 2257–2260 (2007)

    Article  CAS  Google Scholar 

  27. Cruickshank, A.J.B., Windsor, M.L., Young, C.L.: The use of gas-liquid chromatography to determine activity coefficients and second virial coefficients of mixtures II. Experimental studies on hydrocarbon solutes. Proc. R. Soc. Lond. A 295, 271–287 (1966)

    Article  CAS  Google Scholar 

  28. Everett, D.H.: Effect of gas imperfection on GLC measurements: a refined method for determining activity coefficients and second virial coefficient. Trans. Faraday Soc. 61, 1637–1645 (1965)

    Article  CAS  Google Scholar 

  29. Boublik, T., Fried, V., Hala, E.: The Vapour Pressures of Pure Substances. Elsevier, Amsterdam (1984)

    Google Scholar 

  30. Lu, H.Z.: The Handbook of Petrolic Chemical Engineering Data. Chemical Industrial Press, Beijing (1992)

    Google Scholar 

  31. Poling, B.E., Prausnitz, J.M., Connell, J.P.O.: The Properties of Gases and Liquids. Mc Graw-Hill Book Co, New York (2000)

    Google Scholar 

  32. Prausnitz, J.M., Lichtenthaler, R.N., Azevedo, E.G.D.: Molecular Thermodynamics of Fluid-Phase Equilibria. Prentice Hall, New York (1999)

    Google Scholar 

  33. Grant, D.W.: Gas-Liquid Chromatography. Van Nostrand Reinhold, London (1971)

    Google Scholar 

  34. Paduszynski, K., Domanska, U.: Limiting activity coefficients and gas-liquid partition coefficients of various solutes in piperidinium ionic liquids: measurements and LSER calculations. J. Phys. Chem. B 115, 8207–8215 (2011)

    Article  CAS  Google Scholar 

  35. Foco, G.M., Bottini, S.B., Quezada, N., De, I.F.J.C., Peters, C.J.: Activity coefficients at infinite dilution in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. J. Chem. Eng. Data 51, 1088–1091 (2006)

    Article  CAS  Google Scholar 

  36. Kikic, I., Alessi, P., Rasmussen, P., Fredenslund, A.: On the combinatorial part of the UNIFAC and UNIQUAC models. Can. J. Chem. Eng. 58, 253–258 (1980)

    Article  CAS  Google Scholar 

  37. Ge, M.L., Deng, X.M., Zhang, L.H., Chen, J.Y., Xiong, J.M., Li, W.H.: Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-butyl-3-methylimidazolium methyl sulfate. J. Chem. Thermodyn. 77, 7–13 (2014)

    Article  CAS  Google Scholar 

  38. Yaws, C.L.: Chemical Properties Handbook: Physical, Thermodynamic, Environmental, Transport, Safety and Health Related Properties for Organic and Inorganic Chemicals. Mc Graw-Hill Book Co, New York (1999)

  39. Zhang, M., Ge, M.L., Jiao, Y.H., Mu, Z., Huang, R., He, Z.Z.: Determination of the thermodynamic parameters of ionic liquid 1-propyl-3-methylimidazolium bromide by gas-liquid chromatography. J. Chem. Thermodyn. 129, 92–98 (2019)

    Article  CAS  Google Scholar 

  40. Xu, T.T., Zhang, X.Y., Zhang, Q.G.: The thermodynamic and excess properties of [Pmmim][SCN] ionic liquids with thiocyanate and its binary systems with acetonitrile. J. BoHai. Univ: Nat Sci Ed. 39, 125–133 (2018)

    CAS  Google Scholar 

  41. Tiegs, D., Gmehling, J., Medina, A., Soares, M., Bastos J., Alessi, P., Kikic, I.: DECHEMA Chemistry Data Series IX. DECHEMA, Frankfurt (1986)

  42. Domańska, U., Marciniak, A.: Measurements of activity coefficients at infinite dilution of aromatic and aliphatic hydrocarbons, alcohols, and water in the new ionic liquid [EMIM][SCN] using GLC. J. Chem. Thermodyn. 40, 860–866 (2008)

    Article  Google Scholar 

  43. Domańska, U., Laskowska, M.: Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem. Thermodyn. 41, 645–650 (2009)

    Article  Google Scholar 

  44. Domańska, U., Królikowska, M.: Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpiperidinium thiocyanate. J. Chem. Eng. Data 56, 124–129 (2011)

    Article  Google Scholar 

  45. Domańska, U., Marciniak, A., Królikowska, M., Arasimowicz, M.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-hexyl-3-methylimidazolium thiocyanate. J. Chem. Eng. Data 55, 2532–2536 (2010)

    Article  Google Scholar 

  46. Harris, K.R., Kanakubo, M.: Self-diffusion coefficients and related transport properties for a number of fragile ionic liquids. J. Chem. Eng. Data 61, 2399–2411 (2016)

    Article  CAS  Google Scholar 

  47. Królikowska, M., Karpińska, M., Królikowski, M.: Measurements of activity coefficients at infinite dilution for organic solutes and water in N-hexylisoquinolinium thiocyanate, [HiQuin][SCN] using GLC. J. Chem. Thermodyn. 62, 1–7 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Beijing Institute of Petrochemical Technology Training Program for Graduate Students' Innovative Activities and Practical Abilities in 2021 (Zhang Liu) and Beijing Institute of Petrochemical Technology URT Program (Grant No. 2020J00208).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. LZ: conceptualization, methodology, investigation, data curation, validation, writing—review and editing. TZ: data curation, writing—review and editing. YXW: writing—review and editing. BJ: writing—review and editing. YTW: writing—review and editing. ZXW: writing—review and editing. MLG: supervision, writing—review and editing, funding acquisition. LH: writing—review & editing. YHJ: methodology, writing—review and editing.

Corresponding authors

Correspondence to Ming-Lan Ge or Long-Huang.

Ethics declarations

Conflict of interest

All authors of this paper declare no conflict of interest in this paper and agree to submit this manuscript to the Journal of Solution Chemistry.

Consent to Publish

The publication has been approved by all co-authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 129 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Zhang, T., Wang, YX. et al. Thermodynamics and Activity Coefficients at Infinite Dilution for Organic Solutes in Trialkyl-Substituted Imidazolium-Based Ionic Liquid 1-Propyl-2,3-dimethylimidazolium Thiocyanate. J Solution Chem 52, 147–165 (2023). https://doi.org/10.1007/s10953-022-01226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01226-3

Keywords

Navigation