Skip to main content
Log in

Physico-Chemical Characterization of Binary and Ternary Mixtures of Imidazolium Based Cation and Common Anion Ionic Liquids with Lactams

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Excess molar volumes, \(V_{{}}^{{\text{E}}}\), excess isentropic compressibilities, \(\kappa_{{\text{S}}}^{{\text{E}}}\) of binary 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [C4dmim][BF4] (1) + 1-methylpyrrolidin-2-one (NMP) or pyrrolidin-2-one (2-py) (2) and ternary 1-ethyl-3-methylimidazolium tetrafluoroborate [C2mim][BF4] or [C4dmim][BF4] (1) + NMP (2) + 2-py (3) mixtures have been determined from measured densities and speeds of sound at 293.15, 298.15, 303.15 and 308.15 K. \(V_{{}}^{{\text{E}}}\) and \(\kappa_{{\text{S}}}^{{\text{E}}}\) have been fitted to Redlich–Kister (binary, ternary mixtures) and Cibulka (ternary mixtures) equations respectively. Binary, ternary parameters and standard deviations between the experimental and calculated \(V_{{}}^{{\text{E}}}\) and \(\kappa_{{\text{S}}}^{{\text{E}}}\) values have been computed. Molecular interactions have been characterized qualitatively and quantitatively. IR studies and quantum concepts also support the presence of proposed molecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

References

  1. Chaudhary, N., Nain, A.K.: Volumetric, ultrasonic, viscometric and refractive index studies of molecular interactions in binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with methyl acrylate at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 297, 111890 (2020). https://doi.org/10.1016/j.molliq.2019.111890

    Article  CAS  Google Scholar 

  2. Rodríguez Fernández, C.D., Arosa, Y., Algnamat, B., López Lago, E., de la Fuente, R.: An experimental and computational study on the material dispersion of 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids. Phys. Chem. Chem. Phys. 22, 14061–14076 (2020). https://doi.org/10.1039/D0CP01572E

    Article  PubMed  Google Scholar 

  3. Carissimi, G., Montalbán, M.G., Díaz Baños, F.G., Víllora, G.: Density, refractive index and volumetric properties of water–ionic liquid binary systems with imidazolium-based cations and tetrafluoroborate, triflate and octylsulfate anions at T = 293 to 343 K and p = 0.1 MPa. J. Chem. Eng. Data 64, 979–994 (2019). https://doi.org/10.1021/acs.jced.8b00854

    Article  CAS  Google Scholar 

  4. Heydarian, S., Almasi, M., Saadati, Z.: Calculation of Kirkwood-Buff integrals for binary mixtures of 1-butyl-3-methylimidazolium nitrate ionic liquid and alcohols at 298.15 K. J. Mol. Liq. 275, 122–125 (2019). https://doi.org/10.1016/j.molliq.2018.11.076

    Article  CAS  Google Scholar 

  5. Turnaoglu, T., Ritchie, S.G., Shiflett, M.B.: Liquid–liquid equilibria in binary mixtures of dihydroxy alcohols and imidazolium-based ionic liquids. J. Chem. Eng. Data 64, 3179–3186 (2019). https://doi.org/10.1021/acs.jced.9b00283

    Article  CAS  Google Scholar 

  6. Li, J., Zhu, H., Peng, C., Liu, H.: Densities and viscosities for ionic liquids [BMIM][BF4] and [BMIM][Cl] and their binary mixtures at various temperatures and atmospheric pressure. Chin. J. Chem. Eng. 27, 2994–2999 (2019). https://doi.org/10.1016/j.cjche.2019.04.016

    Article  CAS  Google Scholar 

  7. Zhang, S., Zhang, Q., Zhang, Z.C.: Extractive desulfurization and denitrogenation of fuels using ionic liquids. Ind. Eng. Chem. Res. 43, 614–622 (2004). https://doi.org/10.1021/ie030561+

    Article  CAS  Google Scholar 

  8. Xie, L.-L., Favre-Reguillon, A., Pellet-Rostaing, S., Wang, X.-X., Fu, X., Estager, J., Vrinat, M., Lemaire, M.: Selective extraction and identification of neutral nitrogen compounds contained in straight-run diesel feed using chloride based ionic liquid. Ind. Eng. Chem. Res. 47, 8801–8807 (2008). https://doi.org/10.1021/ie701704q

    Article  CAS  Google Scholar 

  9. Li, W., Liu, Q., Xing, J., Gao, H., Xiong, X., Li, Y., Li, X., Liu, H.: High-efficiency desulfurization by adsorption with mesoporous aluminosilicates. AIChE J. 53, 3263–3268 (2007). https://doi.org/10.1002/aic.11319

    Article  CAS  Google Scholar 

  10. Zhang, S., Conrad Zhang, Z.: Novel properties of ionic liquids in selective sulfur removal from fuels at room temperature. Green Chem. 4, 376–379 (2002). https://doi.org/10.1039/b205170m

    Article  CAS  Google Scholar 

  11. Nie, Y., Li, C., Meng, H., Wang, Z.: N, N-dialkylimidazolium dialkylphosphate ionic liquids: their extractive performance for thiophene series compounds from fuel oils versus the length of alkyl group. Fuel Process. Technol. 89, 978–983 (2008). https://doi.org/10.1016/j.fuproc.2008.04.003

    Article  CAS  Google Scholar 

  12. Alonso, L., Arce, A., Francisco, M., Soto, A.: Extraction ability of nitrogen-containing compounds involved in the desulfurization of fuels by using ionic liquids. J. Chem. Eng. Data 55, 3262–3267 (2010). https://doi.org/10.1021/je100075m

    Article  CAS  Google Scholar 

  13. Gabrić, B., Sander, A., Cvjetko Bubalo, M., Macut, D.: Extraction of S- and N-compounds from the mixture of hydrocarbons by ionic liquids as selective solvents. Sci. World J. 2013, 1–11 (2013). https://doi.org/10.1155/2013/512953

    Article  CAS  Google Scholar 

  14. Mesdour, S., Boufades, D., Moussiden, A., Hamada, B.: Extractive dearomatization, denitrification and desulfurization of gas oil fractions by a mixed extractant of N,N-methylpyrrolidone, N, N-dimethylformamide and ethylene glycol via microwave radiations. Petrol. Sci. Technol. 37, 1755–1762 (2019). https://doi.org/10.1080/10916466.2019.1570259

    Article  CAS  Google Scholar 

  15. Bedda, K., Hamada, B., Semikin, K.V., Kuzichkin, N.V.: Desulfurization of light cycle oil by extraction with polar organic solvents. Pet. Coal 61, 1352–1360 (2019)

    CAS  Google Scholar 

  16. Singh, S., Bahadur, I., Redhi, G.G., Ramjugernath, D., Ebenso, E.E.: Density and speed of sound measurements of imidazolium-based ionic liquids with acetonitrile at various temperatures. J. Mol. Liq. 200, 160–167 (2014). https://doi.org/10.1016/j.molliq.2014.10.017

    Article  CAS  Google Scholar 

  17. Rao, S.G., Krishna, T.S., Narendra, K.: Temperature dependent study of thermophysical properties of binary mixtures of imidazolium based ionic liquids with cyclic amides. Indian J. Chem. 58A, 972–984 (2019)

    Google Scholar 

  18. Kavitha, T., Vasantha, T., Venkatesu, P., Rama Devi, R.S., Hofman, T.: Thermophysical properties for the mixed solvents of N-methyl-2-pyrrolidone with some of the imidazolium-based ionic liquids. J. Mol. Liq. 198, 11–20 (2014). https://doi.org/10.1016/j.molliq.2014.07.002

    Article  CAS  Google Scholar 

  19. Shekaari, H., Zafarani-Moattar, M.T., Niknam, M.: Thermodynamic evaluation of imidazolium based ionic liquids with thiocyanate anion as effective solvent to thiophene extraction. J. Mol. Liq. 219, 975–984 (2016). https://doi.org/10.1016/j.molliq.2016.03.061

    Article  CAS  Google Scholar 

  20. Fan, X.-H., Chen, Y.-P., Su, C.-S.: Density and viscosity measurements for binary mixtures of 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][Bf4]) with dimethylacetamide, dimethylformamide, and dimethyl sulfoxide. J. Chem. Eng. Data 61, 920–927 (2016). https://doi.org/10.1021/acs.jced.5b00753

    Article  CAS  Google Scholar 

  21. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties and Methods of Purification, 4th edn. Wiley Interscience, New York (1986)

    Google Scholar 

  22. Scholz, E.: Karl Fischer Titration. Springer-Verlag, Berlin (1984)

    Book  Google Scholar 

  23. Gupta, H., Malik, S., Chandrasekhar, M., Sharma, V.K.: Thermodynamic investigations of excess heat capacities of ternary liquid mixtures containing [Bmmim][BF4] + [Bmim][BF4] or [Emim][BF4] + cyclopentanone or cyclohexanone. J. Therm. Anal. Calorim. 131, 1653–1669 (2018). https://doi.org/10.1007/s10973-017-6587-7

    Article  CAS  Google Scholar 

  24. Ciocirlan, O., Iulian, O.: Properties of pure 1-butyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid and its binary mixtures with dimethyl sulfoxide and acetonitrile. J. Chem. Eng. Data 57, 3142–3148 (2012). https://doi.org/10.1021/je3007474

    Article  CAS  Google Scholar 

  25. Bou Malham, I., Turmine, M.: Viscosities and Refractive indices of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate and 1-butyl-2,3-dimethylimidazolium tetrafluoroborate with water at 298 K. J. Chem. Thermodyn. 40, 718–723 (2008). https://doi.org/10.1016/j.jct.2007.10.002

    Article  CAS  Google Scholar 

  26. Pal, A., Kumar, B., Singh Kang, T.: Effect of structural alteration of ionic liquid on their bulk and molecular level interactions with ethylene glycol. Fluid Phase Equilib. 358, 241–249 (2013). https://doi.org/10.1016/j.fluid.2013.08.029

    Article  CAS  Google Scholar 

  27. Seki, S., Tsuzuki, S., Hayamizu, K., Umebayashi, Y., Serizawa, N., Takei, K., Miyashiro, H.: Comprehensive refractive index property for room-temperature ionic liquids. J. Chem. Eng. Data 57, 2211–2216 (2012). https://doi.org/10.1021/je201289w

    Article  CAS  Google Scholar 

  28. Zech, O., Stoppa, A., Buchner, R., Kunz, W.: The conductivity of imidazolium-based ionic liquids from (248 to 468) K. B. variation of the anion. J. Chem. Eng. Data 55, 1774–1778 (2010). https://doi.org/10.1021/je900793r

    Article  CAS  Google Scholar 

  29. Navia, P., Troncoso, J., Romaní, L.: Viscosities for ionic liquid binary mixtures with a common ion. J. Solution Chem. 37, 677–688 (2008). https://doi.org/10.1007/s10953-008-9260-8

    Article  CAS  Google Scholar 

  30. Reddy, M.S., Nayeem, S.M., Raju, K.T.S.S., Hari Babu, B.: The study of solute–solvent interactions in 1-ethyl-3-methylimidazolium tetrafluoroborate + 2-ethoxyethanol from density, speed of sound, and refractive index measurements. J. Therm. Anal. Calorim. 124, 959–971 (2016). https://doi.org/10.1007/s10973-015-5205-9

    Article  CAS  Google Scholar 

  31. Sharma, D., Bhagour, S., Sharma, V.K.: Thermodynamic and topological studies of 1-ethyl-3-methylimidazolium tetrafluoroborate + pyrrolidin-2-one and 1-methyl-pyrrolidin-2-one mixtures. J. Chem. Eng. Data 57, 3488–3497 (2012). https://doi.org/10.1021/je300542s

    Article  CAS  Google Scholar 

  32. García-Abuín, A., Gómez-Díaz, D., La Rubia, M.D., Navaza, J.M.: Density, speed of sound, viscosity, refractive index, and excess volume of N-methyl-2-pyrrolidone + ethanol (or water or ethanolamine) from T = (293.15 to 323.15) K. J. Chem. Eng. Data 56, 646–651 (2011). https://doi.org/10.1021/je100967k

    Article  CAS  Google Scholar 

  33. Yao, H., Zhang, S., Wang, J., Zhou, Q., Dong, H., Zhang, X.: Densities and viscosities of the binary mixtures of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide with N-methyl-2-pyrrolidone or ethanol at T = (293.15 to 323.15) K. J. Chem. Eng. Data 57, 875–881 (2012). https://doi.org/10.1021/je200922s

    Article  CAS  Google Scholar 

  34. Chhotaray, P.K., Jella, S., Gardas, R.L.: Structural and compositional effect on the acoustic and volumetric properties of ammonium based ionic liquids with water and N-methyl-2-pyrrolidone. J. Mol. Liq. 219, 829–844 (2016). https://doi.org/10.1016/j.molliq.2016.04.040

    Article  CAS  Google Scholar 

  35. Varfolomeev, M.A., Rakipov, I.T., Solomonov, B.N., Marczak, W.: Speed of sound, density, and related thermodynamic excess properties of binary mixtures of 2-pyrrolidone and N-methyl-2-pyrrolidone with acetonitrile and chloroform. J. Chem. Eng. Data 61, 1032–1046 (2016). https://doi.org/10.1021/acs.jced.5b00474

    Article  CAS  Google Scholar 

  36. Krishna, T.S., Nain, A.K., Chentilnath, S., Punyaseshudu, D., Munibhadrayya, B.: Densities, ultrasonic speeds, refractive indices, excess and partial molar properties of binary mixtures of imidazolium based ionic liquid with pyrrolidin-2-one at temperatures from 298.15 L to 323.15 K. J. Chem. Thermodyn. 101, 103–114 (2016). https://doi.org/10.1016/j.jct.2016.05.021

    Article  CAS  Google Scholar 

  37. Saini, N., Yadav, J.S., Jangra, S.K., Sharma, D., Sharma, V.K.: Thermodynamic studies of molecular interactions in mixtures of o-toluidine with pyridine and picolines: excess molar volumes, excess molar enthalpies, and excess isentropic compressibilities. J. Chem. Thermodyn. 43, 782–795 (2011). https://doi.org/10.1016/j.jct.2010.12.028

    Article  CAS  Google Scholar 

  38. Dubey, G.P., Sharma, M.: Temperature and composition dependence of the densities, viscosities, and speeds of sound of binary liquid mixtures of 1-butanol with hexadecane and squalane. J. Chem. Eng. Data 53, 1032–1038 (2008). https://doi.org/10.1021/je7007654

    Article  CAS  Google Scholar 

  39. Gupta, H., Kataria, J., Sharma, D., Sharma, V.K.: Topological investigations of molecular interactions in binary ionic liquid mixtures with a common ion: excess molar volumes, excess isentropic compressibilities, excess molar enthalpies and excess molar heat capacities. J. Chem. Thermodyn. 103, 189–205 (2016). https://doi.org/10.1016/j.jct.2016.08.010

    Article  CAS  Google Scholar 

  40. Malik, S., Gupta, H., Sharma, D., Sharma, V.K.: Excess molar volumes and excess isentropic compressibilities of liquid mixtures formed by tetrahydropyran, piperidine and cyclic ketones at temperature from 293.15 to 308.15 K. J. Mol. Liq. 251, 438–449 (2018). https://doi.org/10.1016/j.molliq.2017.12.083

    Article  CAS  Google Scholar 

  41. Benson, G.C., Kiyohara, O.: Evaluation of excess isentropic compressibilities and isochoric heat capacities. J. Chem. Thermodyn. 11, 1061–1064 (1979). https://doi.org/10.1016/0021-9614(79)90136-8

    Article  CAS  Google Scholar 

  42. Brocos, P., Amigo, A., Pintos, M., Calvo, E., Bravo, R.: Application of the Prigogine–Flory–Patterson model to excess volumes of mixtures of tetrahydrofuran or tetrahydropyran with cyclohexane or toluene. Thermochim. Acta 286, 297–306 (1996). https://doi.org/10.1016/0040-6031(96)02956-5

    Article  CAS  Google Scholar 

  43. Redlich, O., Kister, A.T.: Algebraic representation of thermodynamic properties and the classification of solutions. Ind. Eng. Chem. 40, 345–348 (1948). https://doi.org/10.1021/ie50458a036

    Article  Google Scholar 

  44. Cibulka, I.: Estimation of excess volume and density of ternary liquid mixtures of non-electrolytes from binary data. Collect. Czechoslov. Chem. Commun. 47, 1414–1419 (1982). https://doi.org/10.1135/cccc19821414

    Article  CAS  Google Scholar 

  45. Sharma, V.K., Rohilla, A., Bhagour, S.: Topological studies of molecular interactions in binary and ternary liquid mixtures containing lactams and isomeric chlorotoluenes. J. Mol. Liq. 193, 94–115 (2014). https://doi.org/10.1016/j.molliq.2013.12.013

    Article  CAS  Google Scholar 

  46. Chaudhary, N., Nain, A.K.: Densities, ultrasonic speeds, viscosities, refractive indices, and excess properties of 1-butyl-3-methylimidazolium tetrafluoroborate + n-methylacetamide binary mixtures at different temperatures. J. Chem. Eng. Data 65, 1447–1459 (2020). https://doi.org/10.1021/acs.jced.9b00875

    Article  CAS  Google Scholar 

  47. Chakraborty, M., Barik, S., Mahapatra, A., Sarkara, M.: Binary mixtures of ionic liquids: ideal, non-ideal, or quasi-ideal? J. Chem. Phys. 154, 224507 (2021). https://doi.org/10.1063/5.0051417

    Article  CAS  PubMed  Google Scholar 

  48. Singh, P.P., Nigam, R.K., Singh, K.C., Sharma, V.K.: Topological aspects of the thermodynamics of binary mixtures of non-electrolytes. Thermochim. Acta 46, 175–190 (1981). https://doi.org/10.1016/0040-6031(81)80242-0

    Article  CAS  Google Scholar 

  49. Singh, P.P., Sharma, V.K., Sharma, S.P.: Topological studies of the molecular species that characterize lower alkanol + methylene bromide mixtures: molar excess volumes and molar excess enthalpies. Thermochim. Acta 106, 293–307 (1986). https://doi.org/10.1016/0040-6031(86)85141-3

    Article  CAS  Google Scholar 

  50. Bhagour, S., Solanki, S., Hooda, N., Sharma, D., Sharma, V.K.: Thermodynamic properties of binary mixtures of the ionic liquid [Emim][BF4] with acetone and dimethylsulphoxide. J. Chem. Thermodyn. 60, 76–86 (2013). https://doi.org/10.1016/j.jct.2013.01.010

    Article  CAS  Google Scholar 

  51. Malik, S., Darolia, P.J., Sharma, D., Sharma, V.K.: Densities, speeds of sound and molar heat capacities of solvent mixtures containing cyclic ethers and piperidine. Chem. Data Collect. 31, 100596 (2021). https://doi.org/10.1016/j.cdc.2020.100596

    Article  CAS  Google Scholar 

  52. Singh, P.P.: Topological aspects of the effect of temperature and pressure on the thermodynamics of binary mixtures of non-electrolytes. Thermochim. Acta 66, 37–73 (1983). https://doi.org/10.1016/0040-6031(93)85021-Z

    Article  CAS  Google Scholar 

  53. Kier, L.B., Yalkowaski, S.H., Sinkula, A.A., Valvani, S.C.: Physico-Chemical Properties of Drugs, pp. 227–295. Mercel Dekker, New York and Basel (1980)

    Google Scholar 

  54. Rao, C.N.R.: Chemical Applications of Infrared Spectroscopy. Academic press, New York (1963)

    Google Scholar 

  55. Samadi, Z., Mirzaei, M., Hadipour, N.L., Abedini Khorami, S.: Density functional calculations of oxygen, nitrogen and hydrogen electric field gradient and chemical shielding tensors to study hydrogen bonding properties of peptide group (O=C-NH) in crystalline acetamide. J. Mol. Graph. Model. 26, 977–981 (2008). https://doi.org/10.1016/j.jmgm.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  56. Yogeswari, B., Kanakaraju, R., Boopathi, S., Kolandaivel, P.: Microsolvation and hydrogen bond interactions in glycine dipeptide: molecular dynamics and density functional theory studies. J. Mol. Graph. Model. 35, 11–20 (2012). https://doi.org/10.1016/j.jmgm.2012.02.002

    Article  CAS  PubMed  Google Scholar 

  57. Becke, A.D.: Density functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993)

    Article  CAS  Google Scholar 

  58. Sekhar, M.C., Venkatesulu, A., Mohan, T.M., Gowrisankar, M.: Density functional theory, natural bond orbital and atoms in molecule analyses on the hydrogen bonding interactions in 2-chloroaniline—carboxylic acid complexes. Orient. J. Chem. 31, 897–906 (2015)

    Article  CAS  Google Scholar 

  59. Housaindokht, M.R., Hosseini, H.E., Sadeghi Googheri, M.S., Monhemi, H., Najafabadi, R.I., Ashraf, N., Gholizadeh, M.: Hydrogen bonding investigation in 1-ethyl-3-methylimidazolium based ionic liquids from density functional theory and atoms-in-molecules methods. J. Mol. Liq. 177, 94–101 (2013). https://doi.org/10.1016/j.molliq.2012.10.006

    Article  CAS  Google Scholar 

  60. Sharma, V.K., Malik, S., Solanki, S.: Thermodynamic studies of molecular interactions in mixtures containing tetrahydropyran, 1,4-dioxane, and cyclic ketones. J. Chem. Eng. Data 62, 623–632 (2017). https://doi.org/10.1021/acs.jced.6b00606

    Article  CAS  Google Scholar 

  61. Jangra, S.K., Yadav, J.S., Sharma, V.K.: Thermodynamic properties of liquid mixtures containing 1,3-dioxolane and anilines: excess molar volumes, excess molar enthalpies, excess Gibb’s free energy and isentropic compressibilities changes of mixing. Thermochim. Acta 511, 74–81 (2010). https://doi.org/10.1016/j.tca.2010.07.027

    Article  CAS  Google Scholar 

  62. Yadav, J.S., Sharma, D., Sharma, V.K.: Topological investigations of thermodynamic properties of binary mixtures containing 2-pyrrolidinone. Thermochim. Acta 489, 45–52 (2009). https://doi.org/10.1016/j.tca.2009.02.003

    Article  CAS  Google Scholar 

  63. Sharma, V.K., Bhagour, S., Solanki, S., Sharma, D.: Excess heat capacities of (binary+ternary) mixtures containing [Emim][BF4] and organic liquids. J. Chem. Thermodyn. 79, 19–32 (2014). https://doi.org/10.1016/j.jct.2014.07.014

    Article  CAS  Google Scholar 

  64. Kumar, S., Sharma, V.K., Yadav, J.S., Moon, I.: thermodynamic investigation of molecular interactions in 1,3-dioxolane or 1,4-dioxane + benzene or toluene+formamide or + N, N-dimethylformamide ternary mixtures at 308.15 K and atmospheric pressure. J. Solution Chem. 39, 680–691 (2010). https://doi.org/10.1007/s10953-010-9526-9

    Article  CAS  Google Scholar 

  65. Sharma, D., Yadav, J.S., Singh, K.C., Sharma, V.K.: Molar excess volumes and excess isentropic compressibilities of ternary mixtures containing o-toluidine. J. Solution Chem. 37, 1099–1112 (2008). https://doi.org/10.1007/s10953-008-9294-y

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ms. Poonam Jangra Darolia is thankful to Council of Scientific and Industrial Research (CSIR), New Delhi, India for the award of Junior Research Fellowship (JRF). V.K. Sharma and Dr. Sunita are also grateful to CSIR for the award of Emeritus Scientist and Research Associate (Reference No. 21(1061/18/EMR-II).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Darolia, P.J., Malik, S., Sharma, D. et al. Physico-Chemical Characterization of Binary and Ternary Mixtures of Imidazolium Based Cation and Common Anion Ionic Liquids with Lactams. J Solution Chem 50, 1391–1431 (2021). https://doi.org/10.1007/s10953-021-01127-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01127-x

Keywords

Navigation