Skip to main content
Log in

Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Binding of the drug phenosafranine to hemoglobin (Hb) in aqueous solutions was investigated by fluorescence, UV/vis and circular dichroism (CD) spectral methods at pH=7.4. The fluorescence data showed that fluorescence quenching of Hb by phenosafranine is the result of formation of a phenosafranine–Hb complex with a 1:1 molar ratio. Thermodynamic analysis implied that hydrophobic, electrostatic and hydrogen bond interactions are all involved in stabilizing the complex. The molecular distance (r=4.29 nm) between the donor (Hb) and acceptor (phenosafranine) was calculated according to Förster’s theory. The features of phenosafranine-induced secondary structure changes of Hb have been studied by synchronous fluorescence, CD and three-dimensional fluorescence spectroscopy. This study improves our knowledge of the interaction dynamics of phenazinium drugs to the physiologically important protein Hb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Hb:

hemoglobin

Trp:

tryptophan

Tyr:

tyrosine

Phe:

phenylalanine

CD:

circular dichroism

References

  1. Kragh-Hansen, U., Brennan, S.O., Galliano, M., Sugita, O.: Binding of warfarin, salicylate, and diazepam to genetic variants of human serum albumin with known mutations. Mol. Pharmacol. 37, 238–242 (1990)

    CAS  Google Scholar 

  2. Berezhkovskiy, L.M.: Determination of drug binding to plasma proteins using competitive equilibrium binding. J. Pharmacokinet. Pharmacodyn. 33, 595–608 (2006)

    Article  CAS  Google Scholar 

  3. Perutz, M.F.: Haemoglobin: structure, function and synthesis. Br. Med. Bull. 32, 193–194 (1976)

    CAS  Google Scholar 

  4. Krueger, S., Nossal, R.: SANS studied of interacting hemoglobin in intact erythrocytes. Biophys. J. 53, 97–105 (1988)

    Article  CAS  Google Scholar 

  5. Perutz, M.F., Rossmann, M.G., Cullis, A.F., Muirhead, H., Will, G., North, A.C.T.: Structure of haemoglobin: A three-dimensional Fourier synthesis at 5.5-Å resolution, obtained by X-ray analysis. Nature 185, 416–422 (1960)

    Article  CAS  Google Scholar 

  6. Perutz, M.F.: Structure and mechanism of haemoglobin. Br. Med. Bull. 32, 195–208 (1976)

    CAS  Google Scholar 

  7. Takasu, K., Inoue, H., Kim, H.-S., Suzuki, M., Shishido, T., Wataya, Y., Ihara, M.: Rhodacyanine dyes as antimalarials. 1. Preliminary evaluation of their activity and toxicity. J. Med. Chem. 45, 995–998 (2002)

    Article  CAS  Google Scholar 

  8. Shaikh, S.M.T., Seetharamappa, J., Ashoka, S., Kandagal, P.B.: A study of the interaction between bromopyrogallol red and bovine serum albumin by spectroscopic methods. Dyes Pigments 73, 211–216 (2007)

    Article  CAS  Google Scholar 

  9. Kawakami, M., Koya, K., Ukai, T., Tatsuta, N., Ikegawa, A., Ogawa, K., Shishido, T., Chen, L.B.: Synthesis and evaluation of novel rhodacyanine dyes that exhibit antitumor activity. J. Med. Chem. 40, 3151–3160 (1997)

    Article  CAS  Google Scholar 

  10. Gopidas, K.R., Kamat, P.V.: Photochemistry in polymers. Photoinduced electron transfer between phenosafranine and triethylamine in perfluorosulfonate membrane. J. Phys. Chem. 94, 4723–4727 (1990)

    Article  CAS  Google Scholar 

  11. Nijenhuis, I., Zinder, S.H.: Characterization of hydrogenase and reductive dehalogenase activities of Dehalococcoides ethenogenes strain 195. Appl. Environ. Microbiol. 71, 1664–1667 (2005)

    Article  CAS  Google Scholar 

  12. Vennerstrom, J.L., Makler, M.T., Angerhofer, C.K., Williams, J.A.: Antimalarial dyes revisited: Xanthenes, azines, oxazines, and thiazines. Antimicrob. Agents Chemother. 39, 2671–2677 (1995)

    CAS  Google Scholar 

  13. Sarkar, D., Das, P., Basak, S., Chattopadhyay, N.: Binding interaction of cationic phenazinium dyes with calf thymus DNA: A comparative study. J. Phys. Chem. B 112, 9243–9249 (2008)

    Article  CAS  Google Scholar 

  14. Okutucu, B., Dınçer, A., Habib, Ö., Zıhnıoglu, F.: Comparison of five methods for determination of total plasma protein concentration. J. Biochem. Biophys. Methods 70, 709–711 (2007)

    Article  CAS  Google Scholar 

  15. Subramanyam, R., Gollapudi, A., Bonigala, P., Chinnaboina, M., Amooru, D.G.: Betulinic acid binding to human serum albumin: A study of protein conformation and binding affinity. J. Photochem. Photophys. B, Biol. 94, 8–12 (2009)

    Article  CAS  Google Scholar 

  16. Shaikh, S.M.T., Seetharamappa, J., Kandagal, P.B., Manjunatha, D.H., Ashoka, S.: Spectroscopic investigations on the mechanism of interaction of bioactive dye with bovine serum albumin. Dyes Pigments 74, 665–671 (2007)

    Article  CAS  Google Scholar 

  17. Sereikaite, J., Bumelis, V.-A.: Interaction of serum albumin with vinyl sulfonate azo dye. Cent. Eur. J. Chem. 6, 509–512 (2008)

    Article  CAS  Google Scholar 

  18. Romeo, A.A., Capobianco, J.A., English, A.M.: Superoxide dismutase targets NO from GSNO to Cysβ93 of oxyhemoglobin in concentrated but not dilute solutions of the protein. J. Am. Chem. Soc. 125, 14370–14378 (2003)

    Article  CAS  Google Scholar 

  19. Greenfield, N.J., Fasman, G.D.: Computed circular dichroism spectra for the evaluation of protein conformation. Biochemistry 8, 4108–4116 (1969)

    Article  CAS  Google Scholar 

  20. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy. Springer/Business Media, New York (2006)

    Book  Google Scholar 

  21. Lakowicz, J.R., Weber, G.: Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry 12, 4161–4170 (1973)

    Article  CAS  Google Scholar 

  22. Bi, S.Y., Ding, L., Tian, Y., Song, D.Q., Zhou, X., Liu, X., Zhang, H.Q.: Investigation of the interaction between flavonoids and human serum albumin. J. Mol. Struct. 703, 37–45 (2004)

    Article  CAS  Google Scholar 

  23. Venkateshrao, S., Manoharan, P.T.: Conformational changes monitored by fluorescence study on reconstituted hemoglobins. Spectrochim. Acta, Part A, Mol. Biomol. Spectrosc. 60, 2523–2526 (2004)

    Article  CAS  Google Scholar 

  24. Alpert, B., Jameson, D.M., Weber, G.: Tryptophan emission from human hemoglobin and its isolated subunits. Photochem. Photobiol. 31, 1–4 (1980)

    Article  CAS  Google Scholar 

  25. Perutz, M.F., Fermi, G., Abraham, D.J., Poyart, C., Bursaux, E.: Hemoglobin as a receptor of drugs and peptides: X-ray studies of the stereochemistry of binding. J. Am. Chem. Soc. 108, 1064–1078 (1986)

    Article  CAS  Google Scholar 

  26. Hirsch, R.E., Nagel, R.L.: Conformational studies of hemoglobins using intrinsic fluorescence measurements. J. Biol. Chem. 256, 1080–1083 (1981)

    CAS  Google Scholar 

  27. Idowu, M., Nyokong, T.: Photosensitizing properties of octacarboxy metallophthalocyanines in aqueous medium and their interaction with bovine serum albumin. J. Photochem. Photobiol. A, Chem. 200, 396–401 (2008)

    Article  CAS  Google Scholar 

  28. Zhang, H.-X., Huang, X., Mei, P., Gao, S.: Interaction between glyoxal-bis-(2-hydroxyanil) and bovine serum albumin in solution. J. Solution Chem. 37, 631–640 (2008)

    Article  CAS  Google Scholar 

  29. Kawahara, N.Y., Ohno, H.: Induced thermostability of poly(ethylene oxide)-modified hemoglobin in glycols. Bioconjugate Chem. 8, 643–648 (1997)

    Article  CAS  Google Scholar 

  30. Moreno, F., González-Jiménez, J.: Binding of the Promen fluorescent probe to human serum albumin: a fluorescence spectroscopic study. Chem. Biol. Interact. 121, 237–252 (1999)

    Article  CAS  Google Scholar 

  31. Dufour, C., Dangles, O.: Flavonoid-serum albumin complexation: determination of binding constants and binding sites by fluorescence spectroscopy. Biochim. Biophys. Acta G, Gen. Subj. 1721, 164–173 (2005)

    Article  CAS  Google Scholar 

  32. Ross, P.D., Subramanian, S.: Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry 20, 3096–3102 (1981)

    Article  CAS  Google Scholar 

  33. Job, P.: Formation and stability of inorganic complexes in solution. Ann. Chim. 9, 113–203 (1928)

    CAS  Google Scholar 

  34. Stryer, L., Haugland, R.P.: Energy transfer: A spectroscopic ruler. Proc. Natl. Acad. Sci. USA 58, 719–726 (1967)

    Article  CAS  Google Scholar 

  35. Haouz, A., Mohsni, S.E., Zentz, C., Merola, F., Alpert, B.: Heterogeneous motions within human apohemoglobin. Eur. J. Biochem. 264, 250–257 (1999)

    Article  CAS  Google Scholar 

  36. Xu, H., Liu, Q.W., Zuo, Y., Bi, Y., Gao, S.L.: Spectroscopic studies on the interaction of vitamin C with bovine serum albumin. J. Solution Chem. 38, 15–25 (2009)

    Article  CAS  Google Scholar 

  37. Lloyd, J.B.F., Evett, I.W.: Prediction of peak wavelengths and intensities in synchronously excited fluorescence emission spectra. Anal. Chem. 49, 1710–1715 (1977)

    Article  CAS  Google Scholar 

  38. Miller, J.N.: Recent advances in molecular luminescence analysis. Proc. Anal. Div. Chem. Soc. 16, 203–208 (1979)

    CAS  Google Scholar 

  39. Baldwin, J., Chothia, C.: Haemoglobin: The structural changes related to ligand binding and its allosteric mechanism. J. Mol. Biol. 129, 175–200 (1979)

    Article  CAS  Google Scholar 

  40. Greenfield, N.J.: Determination of the folding of proteins as a function of denaturants, osmolytes or ligands using circular dichroism. Nat. Protoc. 1, 2733–2741 (2006)

    Article  CAS  Google Scholar 

  41. Kelly, S.M., Jess, T.J., Price, N.C.: How to study proteins by circular dichroism. Biochim. Biophys. Acta, Proteins Proteomics 1751, 119–139 (2005)

    Article  CAS  Google Scholar 

  42. Zhang, H.-X., Mei, P.: In vitro binding of furadan to bovine serum albumin. J. Solution Chem. 38, 351–361 (2009)

    Article  Google Scholar 

  43. Kang, J., Liu, Y., Xie, M.X., Li, S., Jiang, M., Wang, Y.D.: Interactions of human serum albumin with chlorogenic acid and ferulic acid. Biochim. Biophys. Acta G, Gen. Subj. 1674, 205–214 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, W., Ding, F. & Sun, Y. Characterization of Phenosafranine–Hemoglobin Interactions in Aqueous Solution. J Solution Chem 40, 231–246 (2011). https://doi.org/10.1007/s10953-010-9647-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-010-9647-1

Keywords

Navigation