Skip to main content
Log in

Isopiestic Measurement of the Osmotic Coefficients of Aqueous {xH 2 SO 4 + (1 x)Fe 2 (SO 4 ) 3 } Solutions at 298.15 and 323.15 K

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This study measures the osmotic coefficients of {xH2SO4 + (1−x)Fe2(SO4)3}(aq) solutions at 298.15 and 323.15 K that have ionic strengths as great as 19.3 mol,kg−1, using the isopiestic method. Experiments utilized both aqueous NaCl and H2SO4 as reference solutions. Equilibrium values of the osmotic coefficient obtained using the two different reference solutions were in satisfactory internal agreement. The solutions follow generally the Zdanovskii empirical linear relationship and yield values of a w for the Fe2(SO4)3–H2O binary system at 298.15 K that are in good agreement with recent work and are consistent with other M2(SO4)3–H2O binary systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nordstrom, D.K., Alpers, C.N.: Geochemistry of acid mine waters. Rev. Econ. Geol. 6A, 133–160 (1999)

    Google Scholar 

  2. Plumlee, G.S.: The environmental geology of mineral deposits. Rev. Econ. Geol. 6A, 71–116 (1999)

    Google Scholar 

  3. Van Breeman, N.: Genesis, morphology and classification of acid sulfate soils in coastal plains. Soil Sci. Soc. Am. Spec. Pub. No. 10, 95–108 (1982)

    Google Scholar 

  4. Joeckel, R.M., Ang Clement, B.J., VanFleet Bates, L.F.: Sulfate-mineral crusts from pyrite weathering and acid rock drainage in the Dakota Formation and Graneros Shale, Jefferson County, Nebraska. Chem. Geol. 215, 433–452 (2005)

    Article  CAS  Google Scholar 

  5. Rawlings D.E.: Biomining: Theory, Microbes & Industrial Processes. Springer-Verlag, Berlin (1997)

    Google Scholar 

  6. Nordstrom, D.K., Alpers, C.N., Ptacek, C.J., Blowes, D.W.: Negative pH and extremely acidic mine waters from Iron Mountain, California. Environ. Sci. Technol. 34, 254–258 (2000)

    Article  CAS  Google Scholar 

  7. Alpers, C.N., Nordstrom, D.K.: Geochemical evolution of extremely acid mine waters at Iron Mountain California-Are there any lower limits to pH? Proc. 2nd Intl. Conf. on the Abatement of Acidic Drainage CANMET, Ottawa, Canada 2, 324–342 (1991)

    Google Scholar 

  8. Cathles L.M.: Attempts to model the industrial scale leaching of copper-bearing mine waste. Environmental Geochemistry of Sulfide Oxidation, ACS Symposium Series 550, 123–131 (1994)

    CAS  Google Scholar 

  9. Platford, R.F.: Experimental methods: Isopiestic. Activity Coefficients in Electrolyte Solutions, CRC Press, Boca Eaton, FL, Vol. 1, 65–79 (1979)

    Google Scholar 

  10. Holmes, H.F, Mesmer, R.E.: Isopiestic studies of sulforic acid at elevated temperatures. Thermodynamic properties. J. Chem. Thermodyn. 24, 317–328 (1992)

    Google Scholar 

  11. Clegg, S.L. Milioto, S., Palmer, D.A.: Osmotic and activity coefficients of aqueous (NH4)2SO4 as a function of temperature, and aqueous (NH4)2SO4–H2SO4 mixtures at 298.15 and 323.15 K. J. Chem. Eng. Data 41, 455–467 (1996)

    Article  CAS  Google Scholar 

  12. Archer, D.G.: Thermodynamic properties of the sodium chloride + water system. II. Thermodynamic properties of NaCl(aq), NaClċ2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    CAS  Google Scholar 

  13. Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from zero to saturation concentration at 298.15°K represented by Pitzer’s ion-interaction equations. J. Phys. Chem. Ref. Data 25, 663–689 (1996)

    CAS  Google Scholar 

  14. Pitzer, K.S., Peiper, J.C., Busey R.H.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    CAS  Google Scholar 

  15. Rogers, P.S.Z., Pitzer, K.S.: Volumetric properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 11, 15–81 (1982)

    CAS  Google Scholar 

  16. Silvester, L.F., Pitzer, K.S.: Thermodynamics of electrolytes. 8. High-temperature properties, including enthalpy and heat capacity, with application to sodium chloride. J. Phys. Chem. 81, 1822–1828 (1977)

    Article  CAS  Google Scholar 

  17. Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic properties of 0–6 molċkg-1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. 90, 1875–1894 (1994)

    Article  CAS  Google Scholar 

  18. Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Am. Chem. Soc. 99, 4930–4936 (1977)

    Article  CAS  Google Scholar 

  19. Rard, J.A., Habenschuss, A., Spedding, F.H.: A review of the osmotic coefficients of aqueous sulfuric acid at 25°C. J. Chem. Eng. Data 21, 374–379 (1976)

    Article  CAS  Google Scholar 

  20. Staples, B.R.: Activity and osmotic coefficients of aqueous sulfuric acid at 298.15 K. J. Phys. Chem. Ref. Data 10, 779–798 (1981)

    Article  CAS  Google Scholar 

  21. Rumyantsev, A., Hageman, S., Moog, H.C.: Isopiestic investigation of the systems Fe2(SO4)3H2SO4 H2O, FeCl3H2O, and Fe(III)–(Na, K, Mg, Ca)ClnH2O at 298.15 K. Z. Phys. Chem. 218, 1089–1127 (2004)

    CAS  Google Scholar 

  22. Majima, H., Awakura, Y.: Water and solute activities of H2SO4Fe2(SO4)3H2O and HCl3FeCl3H2O solution systems: Part I. Activities of water. Metall. Trans. B. 16B, 433–439 (1985)

    CAS  Google Scholar 

  23. Dickson, A.W., Wesolowski, D.J., Palmer, D.A., Mesmer, R.E.: Dissociation constant of bisulfate in aqueous sodium chloride solutions to 250°C. J. Phys. Chem. 94, 7978–7985 (1990)

    Article  CAS  Google Scholar 

  24. Rush, R.M., Johnson, J.S.: Osmotic coefficients of synthetic seawater solutions at 25 °C. J. Chem. Eng. Data 11, 590–592 (1966)

    Article  CAS  Google Scholar 

  25. Söhnel, O., Novotný, P.: Densities of Aqueous Solutions of Inorganic Substances. Elsevier, Amsterdam (1985)

    Google Scholar 

  26. de Laeter, J.R., Böhlke, J.K., De Bièvre, P., Hidaka, H., Peiser, H.S., Rosman, K.J.R., Taylor, P.D.P.: Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl. Chem. 75, 683–800 (2003)

    Google Scholar 

  27. Zdanovskii, A.B.: Trudy Solvanoi Laboratorii 6 Akad. Nauk SSSR (1936)

  28. Clegg, S.L., Seinfeld J.H.: Improvement of the Zdanovskii-Stokes-Robinson model for mixtures containing solutes of different charge types. J. Phys. Chem. A 108, 1008–1017 (2004)

    Article  CAS  Google Scholar 

  29. Yamauchi, C., Sakao, H.: Determination of water and solute activities in the H2SO4–In2(SO4)3–H2O system. Trans. Jap. Inst. Metals 28, 327–335 (1987)

    CAS  Google Scholar 

  30. Yamauchi, C., Fujisawa, T., Sakao, H.: Thermodynamic properties of Ga2(SO4)3–H2SO4–H2O Solution System. Trans. Jap. Inst. Metals 29, 150–159 (1988)

    Google Scholar 

  31. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous Lu2(SO4)3 at 25 °C. J. Solution Chem. 19, 525–541 (1990)

    Article  CAS  Google Scholar 

  32. Robinson, R.A., The osmotic and activity coefficient data of some aqueous salt solutions from vapor pressure measurements. J. Am. Chem. Soc. 59, 84–90 (1937)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velázquez-Rivera, M., Palmer, D.A. & Kettler, R.M. Isopiestic Measurement of the Osmotic Coefficients of Aqueous {xH 2 SO 4 + (1 x)Fe 2 (SO 4 ) 3 } Solutions at 298.15 and 323.15 K. J Solution Chem 35, 1699–1730 (2006). https://doi.org/10.1007/s10953-006-9091-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9091-4

Key Words

Navigation