Skip to main content
Log in

Critical Evaluation of Protonation Constants. Literature Analysis and Experimental Potentiometric and Calorimetric Data for the Thermodynamics of Phthalate Protonation in Different Ionic Media

  • Original Paper
  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The protonation constants of phthalate were determined in aqueous NaCl (0.1 ≤ I ≤ 5,mol⋅L−1) and in aqueous Me4NCl (0.1 mol⋅L−1I ≤ 3,mol⋅L−1) at t = 25,C. Experimental data were employed in conjunction with literature data from studies in different ionic media (Et4NI: 0 ≤ I ≤ 1,mol⋅L−1; NaClO4: 0.05 mol⋅L−1I ≤ 2,mol⋅L−1)to study the dependence on ionic strength using different models, such as the SIT and Pitzer equations, and an Extended Debye-Hückel type equation. Experimental calorimetric data in NaCl and protonation constants at different temperatures in Et4NI (5 ≤ t ≤ 45C) and in NaClO4 (15 ≤ t ≤ 35 C) were also used to study their dependence on temperature. Recommended equilibrium data are reported together with a short discussion of a prospective protocol for drawing these data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martell, A.E., Smith, R.M., Motekaitis, R.J.: National Institute of Standard and Technology, NIST. Critically Selected Stability Constants of Metal Complexes. PC-based Database, Gaithersburg, MD 20899 (2004).

  2. Pettit, L., Powell, K.J.: The IUPAC Stability Constants Database, Academic Software (2001).

  3. May, P.M., Murray, K.: Database of chemical reactions designed to achieve thermodynamic consistency automatically. J. Chem. Eng. Data 46, 1035–1040 (2001).

    Article  CAS  Google Scholar 

  4. Daniele, P.G., De Stefano, C., Foti, C., Sammartano, S.: The effect of ionic strength and ionic medium on the thermodynamic parameters of protonation and complex formation. Curr. Top. Solution Chem. 2, 253–274 (1997).

    CAS  Google Scholar 

  5. Brönsted, J.N.: Studies on solubility IV. Principle of the specific interaction of ions. J. Am. Chem. Soc. 44, 877–898 (1922).

    Article  Google Scholar 

  6. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936).

    Article  CAS  Google Scholar 

  7. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955).

    Article  CAS  Google Scholar 

  8. Ciavatta, L.: The specific interaction theory in the evaluating ionic equilibria. Ann. Chim. (Rome) 70, 551–562 (1980).

    CAS  Google Scholar 

  9. Ciavatta, L.: The specific interaction theory in equilibrium analysia. Some empirical rules for estimatine interaction coefficients of metal ion complexes. Ann. Chim. (Rome) 80, 255–263 (1990).

    CAS  Google Scholar 

  10. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973).

    Article  CAS  Google Scholar 

  11. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions, 2nd Edition, CRC Press, Boca Raton, Florida (1991).

    Google Scholar 

  12. Bretti, C., Foti, C., Sammartano, S.: Calculation of SIT parameters. Part I. A new approach in the use of SIT in determining the dependence on ionic strength of activity coefficients. Application to some chloride salts of interest in the speciation of natural fluids. Chem. Spec. Bioavail. 16, 105–110 (2004).

    CAS  Google Scholar 

  13. de Mendonça, A.J.G., Juusola, P.M.: Activity coefficients of dipotassium phthalate and potassium hydrogen phthalate in water at 298.15 K. Fluid Phase Equil 231, 114–124 (2005).

    Article  CAS  Google Scholar 

  14. De Stefano, C., Princi, P., Rigano, C., Sammartano, S.: Computer analysis of equilibrium data in solution. ESAB2M: An improved version of the ESAB program. Ann. Chim. (Rome) 77, 643–675 (1987).

    CAS  Google Scholar 

  15. De Robertis, A., De Stefano C., Rigano, C.: Computer analysis of equilibrium data in solution. ES5CM fortran and basic programs for computing formation enthalpies from calorimetric measurements. Thermochim. Acta 138, 141–146 (1986).

    Article  Google Scholar 

  16. De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: Computer Tools for the Speciation of Natural Fluids. In: Gianguzza, A., Pellizzetti, E., Sammartano, S. (eds.) Marine Chemistry–An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic Publishers, Amsterdam (1997).

    Google Scholar 

  17. Clarke, E.C.W., Glew, D.N.: Evaluation of thermodynamic functions from equilibrium constants. Trans. Faraday Soc. 539–547 (1965).

  18. Hamer, W.J., Pinching, G.D., Acree, S.F.: First dissociation constant of o-phthalic acid and related pH values of phthalate buffers from 0 to 60. J. Res. Nat. Bur. Standards 35, 539–564 (1945).

    CAS  Google Scholar 

  19. Desai, I.R. Nair, V.S.K.: Metal complexes in solution. I. Phthalates of some transition metals. J. Chem. Soc. 2360–2366 (1962).

  20. Nair, V.S.: Metal complexes in solution. II. Zinc malonate and phthalate. J. Chem. Soc. 1450–1455 (1965).

  21. De Robertis, A., De Stefano, C., Rigano, C., Sammartano, S.: Thermodynamic parameters for the protonation of carboxylic acids in aqueous tetraethylammonium iodide solutions. J. Solution Chem. 19, 569–587 (1990).

    Article  CAS  Google Scholar 

  22. Rey-Castro, C., Castro-Varela, R., Herrero, R., Sastre de Vicente, M.E.: Acid–base equilibria of phthalic acid in saline media: ion association from Pitzer equations. Talanta 60, 93–101 (2003).

    Article  CAS  Google Scholar 

  23. Lumme, P., Kari, E.: Phthalic acid as a reagent in inorganic qualitative analysis of metal ions. Part III. Thermodynamics of the protonation of phthalate ion in aqueous sodium perchlorate solutions. Acta Chem. Scand. A29, 117–124 (1975).

    CAS  Google Scholar 

  24. Tomat, G., Magon, L., Portanova, R., Cassol, A.: Complexes of thorium(IV) with dicarboxylate ligands in aqueous solution. Z. Anorg. Allg. Chem. 393, 184–192 (1972).

    Article  CAS  Google Scholar 

  25. Napoli, A., Magri, A.: Oxovanadium(IV) and dioxouranium(VI) complexes with some pyrazinecarboxylic acids. Ann. Chim. (Rome) 79, 93–96 (1989).

    CAS  Google Scholar 

  26. Goncalves, M., Mota, A.: Complexes of vanadyl and uranyl ions with the chelating groups of humic matter. Talanta 34, 839–847 (1987).

    Article  CAS  Google Scholar 

  27. Napoli, A., Magri, A.: Oxovanadium(IV) complexes with α-pyridinedicarboxylic acids. Ann. Chim. (Rome) 77, 783–788 (1987).

    CAS  Google Scholar 

  28. Olin, A., Svanstrom, P.: The complex formation of hydrogen(+), cadmium(2+) and lead(2+) ions with benzoate, phthalate and isophthalate ions. Acta Chem. Scand. A32, 435–438 (1978).

    Article  CAS  Google Scholar 

  29. Napoli, A. Liberti, A.: Potentiometric study of complexes between aluminum ion and phthalic and benzoic acids. Gazz. Chim. Ital. 100, 906–915 (1970).

    CAS  Google Scholar 

  30. De Bruin, H., Kaitis, D., Temple, R.: The extraction of anionic beryllium complexes by tri-iso-octylamine. Aust J. Chem. 15, 457–466 (1962).

    Article  CAS  Google Scholar 

  31. Khanolkar, V., Jahagirdar, D., Khanolkar, D.: Mixed ligand chelates of uranyl ion. J. Inorg. Nucl. Chem. 35, 931–940 (1973).

    Article  CAS  Google Scholar 

  32. Bretti, C., Crea, F., Foti, C., Sammartano, S.: Solubility and activity coefficients of o-phthalic acid and cystine in NaCl aq , (CH3)4NCl aq and (C2H5)4NI aq at different ionic strengths, at t = 25 C. J. Chem. Eng. Data 50, 1761–1767 (2005).

    Article  CAS  Google Scholar 

  33. Sammartano, S.: unpublished data.

  34. Rivett, A.C.D., Rosemblum, E.I.: The influence of a second solute on the solubility of ortho-phthalic acid. Trans. Faraday Soc. 9, 297–309 (1914).

    Article  CAS  Google Scholar 

  35. Braibanti, A., Ostacoli, G., Paoletti, P., Pettit, L.D., Sammartano, S.: Potentiometric apparatus and technique for the pH-metric measurement of metal-complex equilibrium constants. Pure Appl. Chem. 59, 1721–1728 (1987).

    CAS  Google Scholar 

  36. Tuck, D.G.: A proposal for the use of a standard format for the publication of stability constant measurements. Pure Appl. Chem. 61, 1161 (1989).

    CAS  Google Scholar 

  37. McIntyre, F.: Concentration scales: A plea for physico-chemical data. Mar. Chem. 4, 205 (1976).

    Article  Google Scholar 

  38. Hepler, L.G.: Correct calculation of Δ H , Δ C p , and Δ V from temperature and pressure dependences of equilibrium constants: The importance of thermal expansion and compressibility of the solvent. Thermochimica Acta 50, 69–72 (1981).

    Article  CAS  Google Scholar 

  39. Östhols, E., Wanner, H.: The NEA Thermochemical Data Base Project, Le Seine-St. Germain, France (2000).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Foti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bretti, C., De Stefano, C., Foti, C. et al. Critical Evaluation of Protonation Constants. Literature Analysis and Experimental Potentiometric and Calorimetric Data for the Thermodynamics of Phthalate Protonation in Different Ionic Media. J Solution Chem 35, 1227–1244 (2006). https://doi.org/10.1007/s10953-006-9057-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-006-9057-6

Keywords

Navigation