Skip to main content

Advertisement

Log in

The moment magnitude M w and the energy magnitude M e: common roots and differences

  • Review
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Starting from the classical empirical magnitude-energy relationships, in this article, the derivation of the modern scales for moment magnitude M w and energy magnitude M e is outlined and critically discussed. The formulas for M w and M e calculation are presented in a way that reveals, besides the contributions of the physically defined measurement parameters seismic moment M 0 and radiated seismic energy E S, the role of the constants in the classical Gutenberg–Richter magnitude–energy relationship. Further, it is shown that M w and M e are linked via the parameter Θ = log(E S/M 0), and the formula for M e can be written as M e = M w + (Θ + 4.7)/1.5. This relationship directly links M e with M w via their common scaling to classical magnitudes and, at the same time, highlights the reason why M w and M e can significantly differ. In fact, Θ is assumed to be constant when calculating M w. However, variations over three to four orders of magnitude in stress drop Δσ (as well as related variations in rupture velocity V R and seismic wave radiation efficiency η R) are responsible for the large variability of actual Θ values of earthquakes. As a result, for the same earthquake, M e may sometimes differ by more than one magnitude unit from M w. Such a difference is highly relevant when assessing the actual damage potential associated with a given earthquake, because it expresses rather different static and dynamic source properties. While M w is most appropriate for estimating the earthquake size (i.e., the product of rupture area times average displacement) and thus the potential tsunami hazard posed by strong and great earthquakes in marine environs, M e is more suitable than M w for assessing the potential hazard of damage due to strong ground shaking, i.e., the earthquake strength. Therefore, whenever possible, these two magnitudes should be both independently determined and jointly considered. Usually, only M w is taken as a unified magnitude in many seismological applications (ShakeMap, seismic hazard studies, etc.) since procedures to calculate it are well developed and accepted to be stable with small uncertainty. For many reasons, procedures for E S and M e calculation are affected by a larger uncertainty and are currently not yet available for all global earthquakes. Thus, despite the physical importance of E S in characterizing the seismic source, the use of M e has been limited so far to the detriment of quicker and more complete rough estimates of both earthquake size and strength and their causal relationships. Further studies are needed to improve E S estimations in order to allow M e to be extensively used as an important complement to M w in common seismological practice and its applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abe K (1981) Magnitudes of large shallow earthquakes from 1904 to 1980. Phys Earth Planet Inter 27:72–92

    Article  Google Scholar 

  • Abercrombie RE (1995) Earthquake source scaling relationships from − 1 to 5 M L using seismograms recorded at 22.5 km depth. J Geophys Res 100:24015–24036

    Article  Google Scholar 

  • Aki K (1966) Generation and propagation of G waves from the Niigata earthquake of June 16, 1964, part 2: estimation of earthquake moment, released energy, and stress-strain drop from the G wave spectrum. Bull Earthq Res Inst Univ Tokyo 44:73–88

    Google Scholar 

  • Aki K (1967) Scaling law of seismic spectrum. J Geophys Res 72:1217–1231

    Article  Google Scholar 

  • Aki K (1972) Scaling law of earthquake source time-function. Geophys J R Astron Soc 31:3–25

    Google Scholar 

  • Baumbach M, Bormann P (2002) Determination of source parameters from seismic spectra. In: Bormann P (ed) IASPEI new manual of seismological observatory practice, vol 2, EX 3.4. GeoForschungsZentrum, Potsdam, p 6

  • Beresnev I (2009) The reality of the scaling law of earthquake-source spectra? J Seismol 13:433–436, doi:10.1007/s10950-008-9136-9

    Article  Google Scholar 

  • Boatwright J, Choy GL (1986) Teleseismic estimates of the energy radiated by shallow earthquakes. J Geophys Res 91:2095–2112

    Article  Google Scholar 

  • Boatwright J, Choy GL (1989) Acceleration spectra for subduction zone earthquakes. J Geophys Res 94(B11):15541–15553

    Article  Google Scholar 

  • Bormann P, Saul J (2008) The new IASPEI standard broadband magnitude mB. Seismol Res Lett 79(5):699–706

    Article  Google Scholar 

  • Bormann P, Saul J (2009a) Earthquake magnitude. In: Meyers R (ed) Encyclopedia of complexity and systems science, vol 3. Springer, Heidelberg, pp 2473–2496

    Google Scholar 

  • Bormann P, Saul J (2009b) A fast, non-saturating magnitude estimator for great earthquakes. Seismol Res Lett 80(5):808–816. doi:10.1785/gssrl.80.5.808

    Article  Google Scholar 

  • Bormann P, Baumbach M, Bock M, Grosser H, Choy GL, Boatwright JJ (2002) Seismic sources and source parameters. In: Bormann P (ed) IASPEI new manual seismological observatory practice, vol 1, chapter 3. GeoForschungsZentrum, Potsdam, p 94

    Google Scholar 

  • Bormann P, Liu R, Ren X, Gutdeutsch R, Kaiser D, Castellaro S (2007) Chinese national network magnitudes, their relation to NEIC magnitudes, and recommendations for new IASPEI magnitude standards. Bull Seismol Soc Am 97:114–127

    Article  Google Scholar 

  • Bormann P, Liu R, Xu Z, Ren K, Zhang L, Wendt S (2009) First application of the new IASPEI teleseismic magnitude standards to data of the China National Seismographic Network. Bull Seismol Soc Am 99(3):1868–1891. doi:10.1785/0120080010

    Article  Google Scholar 

  • Braunmiller J, Kradolfer U, Baer M, Giardini D (2002) Regional moment tensor determinations in the European-Mediterranian area—initial results. Tectonophysics 356:5–22

    Article  Google Scholar 

  • Braunmiller J, Deichmann N, Giardini D, Wiemer S, and the SED Magnitude Working Group (2005) Homogeneous moment-magnitude calibration in Switzerland. Bull Seismol Soc Am 95:58–74

    Article  Google Scholar 

  • Brune JN (1970) Tectonic stress and the spectra of shear waves from earthquakes. J Geophys Res 75:4997–5009

    Article  Google Scholar 

  • Choy GL, Boatwright J (1995) Global patterns of radiated seismic energy and apparent stress. J Geophys Res 100:18205–18228

    Article  Google Scholar 

  • Choy GL, Kirby S (2004) Apparent stress, fault maturity and seismic hazard for normal-fault earthquakes at subduction zones. Geophys J Int 159:991–1012

    Article  Google Scholar 

  • Choy GL, McGarr A, Kirby SH, Boatwirght J (2006) An overview of the global variability in radiated energy and apparent stress. In: Abercrombie R, McGarr A, Kanamori H (eds) Radiated energy and the physics of earthquake faulting. AGU Geophys Monogr Ser 170:43–57

  • Di Bona M, Rovelli A (1988) Effects of bandwidth limitation on stress drop estimated from integrals of the ground motion. Bull Seismol Soc Am 78:1818–1825

    Google Scholar 

  • Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010a) Suitability of rapid energy magnitude estimations for emergency response purposes. Geophys J Int 180:361–374. doi:10.1111/j.1365-246X.2009.04416.x

    Article  Google Scholar 

  • Di Giacomo D, Parolai S, Bormann P, Grosser H, Saul J, Wang R, Zschau J (2010b) Erratum to “Suitability of rapid energy magnitude estimations for emergency response purposes”. Geophys J Int 181:1725–1726. doi:10.1111/j.1365-246X.2010.04610.x

    Google Scholar 

  • Duda S, Kaiser D (1989) Spectral magnitudes, magnitude spectra and earthquake quantification; the stability issue of the corner period and of the maximum magnitude for a given earthquake. Tectonophysics 166:205–219

    Article  Google Scholar 

  • Dziewonski AM, Chou TA, Woodhouse JH (1981) Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J Geophys Res 86(2):2825–2852

    Article  Google Scholar 

  • Eshelby JD (1969) The elastic field of a crack extending non-uniformly under general anti-plane loading. J Mech Phys Solids 8:100–104

    Google Scholar 

  • Grünthal G, Wahlström R (2003) An M w based earthquake catalogue for central, northern and northwestern Europe using a hierarchy of magnitude conversions. J Seismol 7:507–531

    Article  Google Scholar 

  • Grünthal G, Wahlström R, Stromeyer D (2009) The unified catalogue of earthquakes in central, northern, and northwestern Europe (CENEC) – updated and expanded to the last millennium. J Seismol 13:517–541. doi:10.1007/s10950-008-9144-9

    Article  Google Scholar 

  • Gutenberg B (1945a) Amplitude of surface waves and magnitude of shallow earthquakes. Bull Seismol Soc Am 35:3–12

    Google Scholar 

  • Gutenberg B (1945b) Amplitudes of P, PP, and S and magnitude of shallow earthquakes. Bull Seismol Soc Am 35:57–69

    Google Scholar 

  • Gutenberg B (1945c) Magnitude determination of deep-focus earthquakes. Bull Seismol Soc Am 35:117–130

    Google Scholar 

  • Gutenberg B, Richter CF (1956a) Magnitude and energy of earthquakes. Ann Geofis 9:1–15

    Google Scholar 

  • Gutenberg B, Richter CF (1956b) The energy of earthquakes. Q J Geol Soc London 17:1–14

    Article  Google Scholar 

  • Hanks C, Kanamori H (1979) A moment magnitude scale. J Geophys Res 84:2348–2350

    Article  Google Scholar 

  • Hara T (2007a) Measurement of the duration of high-frequency energy radiation and its application to determination of the magnitudes of large shallow earthquakes. Earth Planets Space 59:227–231

    Google Scholar 

  • Hara T (2007b) Magnitude determination using duration of high frequency radiation and displacement amplitude: application to tsunami earthquakes. Earth Planets Space 59:561–565

    Google Scholar 

  • Hartzel SH, Heaton T (1985) Teleseismic time functions for large, shallow subduction zone earthquakes. Bull Seismol Soc Am 75(4):965–1004

    Google Scholar 

  • Haskell NA (1964) Total energy and energy spectral density of elastic wave radiation from propagating faults. Bull Seismol Soc Am 54(6):1811–1841

    Google Scholar 

  • Houston H (1999) Slow ruptures, roaring tsunamis. Nature 400:409–410

    Article  Google Scholar 

  • Houston H, Kanamori H (1986) Source spectra of great earthquakes: teleseismic constraints on rupture process and strong motion. Bull Seismol Soc Am 76:19–42

    Google Scholar 

  • Husseini MI (1977) Energy balance for formation along a fault. Geophys J R Astron Soc 49:699–714

    Google Scholar 

  • IASPEI (2005) Summary of Magnitude Working Group recommendations on standard procedures for determining earthquake magnitudes from digital data. http://www.iaspei.org/commissions/CSOI.html

  • Ide S, Beroza GC (2001) Does apparent stress vary with earthquake size? Geophys Res Lett 28(17):3349–3352

    Article  Google Scholar 

  • Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Planet Earth Inter 6:346–359

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82:2981–2987

    Article  Google Scholar 

  • Kanamori H (1978) Quantification of earthquakes. Nature 271(2):411–414

    Article  Google Scholar 

  • Kanamori H (1983) Magnitude scale and quantification of earthquakes. Tectonophysics 93:185–199

    Article  Google Scholar 

  • Kanamori H (2006) The radiated energy of the 2004 Sumatra-Andaman earthquake. In: Abercrombie R, McGarr A, Kanamori H (eds) Radiated energy and the physics of earthquake faulting. AGU Geophys Monogr Ser 170:59–68

  • Kanamori H, Anderson DL (1975) Theoretical basis of some empirical relations in seismology. Bull Seismol Soc Am 65(5):1073–1095

    Google Scholar 

  • Kanamori H, Kikuchi M (1993) The 1992 Nicaragua earthquake: a slow tsunami earthquake associated with subducted sediments. Nature 361:714–716

    Article  Google Scholar 

  • Kanamori H, Brodsky EE (2004) The physics of earthquakes. Rep Prog Phys 67:1429–1496. doi:10.1088/0034-4885/67/8/R03

    Article  Google Scholar 

  • Knopoff L (1958) Energy release in earthquakes. Geophys J 1:44–52

    Article  Google Scholar 

  • Kostrov BV (1966) Unsteady propagation of longitudinal shear cracks. J Appl Math Mech (Engl. transl.) 30:1241–1248

    Google Scholar 

  • Kostrov BV (1974) Seismic moment and energy of earthquakes, and seismic flow of rock, Izv. Acad Sci USSR, Phys Solid Earth (English Transl) 1:23–40

    Google Scholar 

  • Krüger F, Ohrnberger M (2005) Tracking the rupture of the M w = 9.3 Sumatra earthquake over 1,150 km at teleseismic distances. Nature 435:937–939. doi:10.1038/nature03696

    Google Scholar 

  • Kwiatek G, Plenkers K, Nakatani M, Yabe Y, Dresen G, JAGUAR-Group (2010) Frequency-magnitude characteristics down to magnitude − 4.4 for induced seismicity recorded at Mponeng Gold Mine, South Africa. Bull Seismol Soc Am 100(3):1165–1173. doi:10.1785/0120090277

    Article  Google Scholar 

  • Lomax A, Michelini A (2009a) M wpd: a duration-amplitude procedure for rapid determination of earthquake magnitude and tsunamigenic potential from P waveforms. Geophys J Int 176:200–214. doi:10.1111/j.1365-246X.2008.03974.x

    Article  Google Scholar 

  • Lomax A, Michelini A (2009b) Tsunami early warning using earthquake rupture duration. Geophys Res Lett 36:L09306. doi:10000.1029/2009GL037223

    Article  Google Scholar 

  • Lomax A, Michelini A, Piatanesi A (2007) An energy-duration procedure for rapid and accurate determination of earthquake magnitude and tsunamigenic potential. Geophys J Int 170:1195–1209. doi:10.1111/j.1365-246X.2007.03469.x

    Article  Google Scholar 

  • Newman AV, Okal EA (1998) Teleseismic estimates of radiated seismic energy: the E/M o for tsunami earthquakes. J Geophys Res 103:26885–26897

    Article  Google Scholar 

  • Okal EA, Talandier J (1989) M m: a variable period mantle magnitude. J Geophys Res 94:4169–4193

    Article  Google Scholar 

  • Orowan E (1960) Mechanisms of seimic faulting in rock deformation: a symposium. Geol Soc Am Mem 79:323–345

    Google Scholar 

  • Papazachos BC, Kiratzi AA, Karacostas BG (1997) Towards a homogeneous moment-magnitude determination for earthquakes in Greece and the surrounding area. Bull Seismol Soc Am 87:474–483

    Google Scholar 

  • Parolai S, Bindi D, Durukal E, Grosser H, Milkereit C (2007) Source parameter and seismic moment-magnitude scaling for northwestern Turkey. Bull Seimol Soc Am 97(2):655–660

    Article  Google Scholar 

  • Péres-Campos X, Beroza GC (2001) An apparent mechanism dependence of radiated seismic energy. J Geophys Res 106(B6):11127–11136

    Article  Google Scholar 

  • Polet J, Kanamori H (2000) Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys J Int 142:684–702

    Article  Google Scholar 

  • Polet J, Kanamori (2009) Tsunami earthquakes. In: Meyers R (ed) Encyclopedia of complexity and systems science, vol 10, pp 9577–9592

  • Richter C (1935) An instrumental earthquake magnitude scale. Bull Seismol Soc Am 25:1–32

    Google Scholar 

  • Richter C (1958) Elementary seismology. Freeman, San Francisco, p 768

    Google Scholar 

  • Ristau J, Rogers GC, Cassidy JF (2005) Moment magnitude-local magnitude calibration for earthquakes in Western Canada. Bull Seismol Soc Am 95:1994–2000

    Article  Google Scholar 

  • Savage JC, Wood MD (1971) The relation between apparent stress and stress drop. Bull Seismol Soc Am 61:1381–1388

    Google Scholar 

  • Schweitzer J, Kværna T (1999) Influence of source radiation patterns on globally observed short-period magnitude estimates (mb). Bull Seismol Soc Am 89(2):342–347

    Google Scholar 

  • Scordilis EM (2006) Empirical global relations converting M S and m b to moment magnitude. J Seismol 10:225–236

    Article  Google Scholar 

  • Singh SK, Ordaz M (1994) Seismic energy release in Mexican subductiion zone earthquakes. Bull Seismol Soc Am 84(5):1533–1550

    Google Scholar 

  • Stein S, Okal EA (2005) Speed and size of the Sumatra earthquake. Nature 434:581–582. doi:10.1038/434581a

    Article  Google Scholar 

  • Stromeyer D, Grünthal G, Wahlstrom R (2004) Chi-square regression for seismic strength parameter relations, and their uncertainties, with applications to an Mw based earthquake catalogue for central, northern and northwestern Europe. J Seismol 8(1):143–153

    Article  Google Scholar 

  • Tsai VC, Nettles M, Ekström G, Dziewonski A (2005) Multiple CMT source analysis of the 2004 Sumatra earthquake. Geophys Res Lett 32:L17304. doi:10.1029/2005GL023813

    Article  Google Scholar 

  • Vassiliou MS, Kanamori H (1982) The energy release in earthquakes. Bull Seismol Soc Am 72:371–387

    Google Scholar 

  • Venkataraman A, Kanamori H (2004a) Observational constraints on the fracture energy of subduction zone earthquakes. J Geophys Res 109:B04301. doi:0431.01029JB002549

    Article  Google Scholar 

  • Venkataraman A, Kanamori H (2004b) Effect of directivity on estimates of radiated seismic energy. J Geophys Res 109:B04301. doi:10.1029/2003JB002548

    Article  Google Scholar 

  • Weinstein SA, Okal EA (2005) The mantle wave magnitude M m and the slowness parameter Θ: five years of real-time use in the context of tsunami warning. Bull Seismol Soc Am 95:779–799. doi:10.1785/0120040112

    Article  Google Scholar 

  • Wessel P, Smith WHF (1991) Free software helps map and display data. Eos Trans AGU 72(41):441, 445–446

    Article  Google Scholar 

  • Wyss M, Brune JN (1968) Seismic moment, stress, and source dimensions for earthquakes in the California-Nevada region. J Geophys Res 73:4681–4694

    Article  Google Scholar 

  • Yadav RBS, Bormann P, Rastogi BK, Chopra MC (2009) A homogeneous and complete earthquake catalog for northeast India and the adjoining region. Seism Res Lett 80(4):598–616

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domenico Di Giacomo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bormann, P., Di Giacomo, D. The moment magnitude M w and the energy magnitude M e: common roots and differences. J Seismol 15, 411–427 (2011). https://doi.org/10.1007/s10950-010-9219-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-010-9219-2

Keywords

Navigation