Skip to main content
Log in

Research on Force Characteristics and Running Performance of Novel Type High-Temperature Superconductor Magnetic Levitation Vehicle

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The high-temperature superconductor (HTS) magnetic levitation vehicle (Maglev) is one of the important modes in the rail traffic. In order to study the levitation characteristics of HTS Maglev, the captured magnetic field characteristics of HTS bulk are analyzed in the different field cooling heights. Based on the thought of frozen image model, the equivalent processing method for HTS bulk is proposed to calculate the levitation force between HTS bulk and permanent magnet, which is validated by way of experiment. In order to improve the usage ratio of permanent magnet (PM) railway and enhance levitation force, a novel type HTS Maglev with the three-layer sandwich structure is proposed by way of HTS combination distributed on the upper and below sides of PM railway. Based on force characteristics and UM software, the digital prototype of novel type HTS Maglev is established including a carriage and six suspension frames. The dynamic response of novel type HTS Maglev can be obtained in the case of different running speeds, which can evaluate the running performance. The aim of our manuscript is to provide a feasible method for performance evaluation and some guidance for optimizing the design of train structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data Availability

The data that supports the findings of this study are available within the article.

References

  1. Ren, X.J., Feng, M., Ren, T.M.: Design and optimization of a radial high temperature superconducting magnetic bearing[J]. IEEE Trans. Appl. Supercond. 29(2), 1–5 (2019)

    Article  Google Scholar 

  2. Xu J, Zhang F, Jin Y, et al.: Development status and prospects of high-Tc superconducting magnetic bearing. Mater China. 36(5), 321–328+351 (2017)

  3. Sun, R.X., Deng, Z.G., He, D.B., et al.: Parameter optimization of the PMbearing for high temperature superconducting flywheel energy storage systems [J]. Cryogenics & Superconductivity 42(2), 1–4 (2014)

    Google Scholar 

  4. Zhang M L, Ye M Y, Liu P F, et al.: The demonstrations of flux pinning for space docking of CubeSat sized spacecraft in simulated microgravity conditions. IEEE Transact. Appl. Superconduct. 29(6), 3601816 1–16 (2019)

  5. Zhang, M.L., Han, Y.J., Guo, X., et al.: The connection characteristics of flux pinned docking interface[J]. J. Appl. Phys. 121(113907), 1–10 (2017)

    Google Scholar 

  6. Zhang M L, Zhou L, Lu Y.: Controllability of flux pinned docking interface. IEEE Transact. Appl. Superconduct. 25(4), 3601707 1–7 (2015)

  7. Lu, Y., Zhang, M.L., Gao, D.: Connection stiffness and dynamical docking process of flux pinned spacecraft modules[J]. J. Appl. Phys. 115(063904), 1–13 (2014)

    Google Scholar 

  8. Lu, Y., Zhang, M.L., Gao, D.: Lateral force and lateral connection stiffness of flux pinned docking interface[J]. J. Supercond. Novel Magn. 26(10), 3027–3036 (2013)

    Article  Google Scholar 

  9. Lu, Y., Zhang, M.L., Gao, D.: Axial force and passive stability of a flux pinned space system[J]. J. Supercond. Novel Magn. 25(7), 2323–2329 (2012)

    Article  Google Scholar 

  10. Deng Z G, Zhang W H, Zheng J, et al.: A high-temperature superconducting Maglev–evacuated tube transport (HTS Maglev–ETT) test system. IEEE Transact. Appl. Superconduct. 27(6), 3602008 1–13 (2017)

  11. Deng, Z.G., Li, J.P., Wang, H.D., et al.: Dynamic simulation of the vehicle/bridge coupled system in high temperature superconducting Maglev[J]. Computing in Science & Engineering 21(3), 60–71 (2019)

    Article  Google Scholar 

  12. Deng Z G, Zhang W F, Chen Y, et al.: Optimization study of the Halbach permanent magnetic guideway for high temperature superconducting Maglev. Superconduct. Sci. Technol. 33(3), 034009 1–11 (2020)

  13. Schultz, L., De Haas, O., Verges, P., et al.: Superconductively levitated transport system—The SupraTrans project[J]. IEEE Trans. Appl. Supercond. 15, 2301–2305 (2005)

    Article  ADS  Google Scholar 

  14. Stephan, R.M., Costa, F., Rodriguez, E., et al.: Retrospective and perspectives of the superconducting magnetic levitation (SML) technology applied to urban transportation[J]. Transp. Syst. Technol. 4, 195–202 (2018)

    Article  Google Scholar 

  15. Stephan, R.M., Pereira, A.O.: The vital contribution of Maglev vehicles for the mobility in smart cities[J]. Electronics 9, 978–990 (2020)

    Article  Google Scholar 

  16. Stephan R, De Andrade R, Ferreira A C, et al.: Superconducting levitation applied to urban transportation. In Wiley Encyclopedia of Electrical and Electronics Engineering; Wiley: London, UK,  1-10 (2017). https://doi.org/10.1002/047134608X.W8346

  17. Mattos L S, Rodriguez E F, Costa F, et al.: MagLev-Cobra operational tests. IEEE Transact. Appl. Superconduct. 26(3): 3600704 1–4 (2016)

  18. Sotelo G G, De Oliveira R A H, Costa F S, et al: A full scale superconducting magnetic levitation (MagLev) vehicle operational line. IEEE Transact. Appl. Superconduct. 25(3), 3601005 1–5 (2015)

  19. Sotelo, G.G., Dias, D.H.J.N., De Oliveira, R.A.H., et al.: MagLev Cobra: test facilities and operational experiments[C]. J. Phys: Conf. Ser. 507(032017), 1–4 (2014)

    Google Scholar 

  20. Dias D H N, Sotelo G G, Rodriguez E F, et al.: Emulation of a full scale MagLev vehicle behavior under operational conditions. IEEE Transact. Appl. Superconduct. 23(3), 3601105 1–5 (2013)

  21. Stephan RM, David EG, Haas O.: Maglev-Cobra: an urban transportation solution using HTS-superconductors and permanent magnets. In Proceedings of the 20th Int. Conf. on Magnetically Levitated Systems and Linear Drives, San Diego, CA, USA, 15–18 December (2008)

  22. Stephan R, Sotelo G G, Herskovits J, et al.: Optimization of a superconducting magnetic rail using a feasible direction interior point algorithm. Eng. Opt. Internatl. Conf. Eng. Opt. Rio de Janeiro, Brazil, 01–05 June (2008)

  23. Wang J S, Wang S Y, Ren Z, et al.: Guidance forces on high temperature superconducting Maglev test vehicle.IEEE Transact. Appl. Superconduct. 13(2), 2154 – 2156 (2003)

  24. Aloisio, A., De Angelo, M., Alaggio, R., et al.: Dynamic identification of HTS maglev module for suspended vehicle by using a single-degree-of-freedom generalized Bouc-Wen hysteresis model[J]. J. Supercond. Novel Magn. 34(2), 399–407 (2021)

    Article  Google Scholar 

  25. Zheng J, Chen N, Zhang W, et al.: Modeling study on high-temperature superconducting bulk's growth anisotropy effect on magnetization and levitation properties in applied magnetic fields. Superconduct. Sci. Technol. 34(3), 035011 1–11 (2021)

  26. Zheng, J., Sun, R., Li, H., et al.: A manned hybrid maglev vehicle applying permanent magnetic levitation (PML) and superconducting magnetic levitation (SML)[J]. IEEE Trans. Appl. Supercond. 30(3600107), 1–3 (2020)

    Google Scholar 

  27. Wang S, Li H, Wang L, et al.: Suspension parameters optimization of HTS Maglev under random vibration. IEEE Transact. Appl. Superconduct. 31(8), 3603704 1–4 (2021)

  28. Li H, Liu D, Hong Y, et al.: Modeling and identification of the hysteresis nonlinear levitation force in HTS maglev systems. Superconduct. Sci. Technol. 33(5), 054001 1–4 (2020)

  29. Li H, Deng Z, Ke Z, et al.: Curve negotiation performance of high-temperature superconducting maglev based on guidance force experiments and dynamic simulations. IEEE Transact. Appl. Superconduct. 30(1), 3600311 1–3 (2020) 

  30. Kordyuk, A.A.: Magnetic levitation for hard superconductors. J. Appl. Phys. 83(1), 610 (1998)

    Article  ADS  Google Scholar 

  31. Cansiz, A., Hull, J.R., Gundogdu, Ö.: Translational and rotational dynamic analysis of a superconducting levitation. Supercond. Sci. Technol. 18, 991 (2005)

    Article  ADS  Google Scholar 

  32. Hull, J.R., Cansiz, A.: Vertical and lateral forces between a PM and a high-temperature superconductor. J. Appl. Phys. 86(11), 6397 (1999)

    Article  ADS  Google Scholar 

  33. Cansiz, A.: Correlation between free oscillation frequency and stiffness in high temperature superconducting bearings. Physica C 390, 356–362 (2003)

    Article  ADS  Google Scholar 

  34. Zhang, M.L., Yu, D.S., Deng, Z.G., et al.: The mechanical characteristics and control of high temperature superconducting magnetic docking mechanism. AIP Adv. 11(055208), 1–16 (2021)

    Google Scholar 

Download references

Funding

This study was supported by “Hebei Province Youth Top-notch Talent Program in China” (No. BJ2018019), “Opening Foundation of State Key Laboratory of Traction Power, Southwest Jiaotong University” (No. TPL2010), and “Opening Foundation of Key Laboratory of Opto-technology and Intelligent Control (Lanzhou Jiaotong University), Ministry of Education” (No. KFKT 2020–07).

Author information

Authors and Affiliations

Authors

Contributions

M. L. Zhang contributed to the designated work. M. L. Zhang and G. X. Sun contributed to the performed work. P. F. Liu, Y. F. Yan, X. M. Yang, Y. Y. Yan, and L. R. Liu contributed to the analytic tools and analyzed method and discussion. M. L. Zhang and G. X. Sun contributed to writing and revising the manuscript.

Corresponding author

Correspondence to Mingliang Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Sun, G., Liu, P. et al. Research on Force Characteristics and Running Performance of Novel Type High-Temperature Superconductor Magnetic Levitation Vehicle. J Supercond Nov Magn 35, 635–646 (2022). https://doi.org/10.1007/s10948-021-06075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-021-06075-7

Keywords

Navigation