Skip to main content
Log in

Spin-Glass Behavior in Spinel Compound ZnCoTiO4

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this paper, we report a spin-glass (SG) behavior by comprehensive magnetic measurements in spinel compound ZnCoTiO4. The temperature dependence of DC magnetization exhibits a strong irreversibility under zero field cooled and field cooled processes. At the same time, AC susceptibility measurement reveals that the peak position moves towards high temperature with increasing frequency. These results unanimously indicate that a magnetic frustration behavior has occurred in this system. In addition, the relevant parameters (T0 = 14.4 K, τ0 = 8.3165 × 10−11 s,  = 4.53) are observed by the data of AC susceptibility measurement, suggesting a typical SG behavior. The magnetic relaxation behavior (MIRM vs. t) further manifests a SG behavior in ZnCoTiO4. Furthermore, the origin of SG behavior in ZnCoTiO4 may be contributed to atomic disorders or the competition between ferromagnetic (FM) and antiferromagnetic (AFM) interactions, or both.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dormann, J.L., Nogues, M.: Magnetic structures of substituted ferrites. J. Phys. Condens. Matter. 2, 1223 (1990)

    Article  ADS  Google Scholar 

  2. Tsutaoka, T.: Frequency dispersion of complex permeability in Mn–Zn and Ni–Zn spinel ferrites and their composite materials. J. Appl. Phys. 93, 2789 (2003)

    Article  ADS  Google Scholar 

  3. Nakashima, S., Fujita, K., Tanaka, K., Hirao, K.: High magnetization and the high-temperature superparamagnetic transition with intercluster interaction in disordered zinc ferrite thin film. J. Phys. Condens. Matter. 17, 137–149 (2005)

    Article  ADS  Google Scholar 

  4. Yunus, S.M., Fernandez-Baca, J.A., Asgar, M.A., Ahmed, F.U.: Neutron diffraction study of magnetic ordering in the spinel oxide Cox Mn1-x Al2x Fe2-2x O4. J. Alloys. Comp. 298, 9–17 (2000)

    Article  Google Scholar 

  5. Nayak, S., Thota, S., Joshi, D.C., Krautz, M., Waske, A., Behler, A., Eckert, J., Sarkar, T., Andersson, M.S., Mathieu, R., Narang, V., Seehra, M.S.: Magnetic compensation, field-dependent magnetization reversal, and complex magnetic ordering in Co2TiO4. Phys. Rev. B. 92, 214434 (2015)

    Article  ADS  Google Scholar 

  6. Yang, W., Kan, X.C., Liu, X.S., Wang, Z.Z., Chen, Z.H., Wang, Z., Zhu, R.W., Shezad, M.: Spin glass behavior in Zn0.8-xNixCu0.2Fe2O4 (0 ≤ x ≤ 0.28) ferrites. Ceram. Int. 45, 23328–23332 (2019)

    Article  Google Scholar 

  7. Moritomo, Y., Tomioka, Y., Asamitsu, A., Tokura, Y.: Magnetic and electronic properties in hole-doped manganese oxides with layered structures: La1-xSr1+xMnO4. Phys. Rev. B. 51, 0163–1829 (1995)

    Article  Google Scholar 

  8. Weissman, M.B.: What is a spin glass? A glimpse via mesoscopic noise. Rev. Mod. Phys. 65, 829 (1993)

    Article  ADS  Google Scholar 

  9. Mydsh, J.A.: Disordered magnetism and spin glasses. J. Magn. Magn. Mater. 157(158), 606–610 (1996)

    Article  ADS  Google Scholar 

  10. Karmakar, S., Taran, S., Bose, E., Chaudhuri, B.K.: Evidence of intrinsic exchange bias and its origin in spin-glass-like disordered L0.5Sr0.5MnO3 manganites (L=Y, Y0.5Sm0.5, and Y0.5La0.5). Phys. Rev. B. 77, 144409 (2008)

    Article  ADS  Google Scholar 

  11. Kirkpatrick, S., Shcrrington, D.: Infinite-ranged models of spin-glasses. Phys. Rev. B. 17, 4384 (1978)

    Article  ADS  Google Scholar 

  12. Mahana, S., Topwal, D.: Complex spin glass behavior in Ga2-xFexO3. Appl. Phys. Lett. 110, 102907 (2017)

    Article  ADS  Google Scholar 

  13. Gavoille, G., Hubsch, J.: Neutron scattering in insulating semi-spin glass. J. Magn. Magn. Mater. 36, 89–94 (1983)

    Article  ADS  Google Scholar 

  14. Fiorani, D., Viticoli, S., Dormann, J.L., Tholence, J.L., Murani, A.P.: Spin-glass behavior in an antiferromagnetic frustrated spinel: ZnCr1.6Ga0.4O4. Phys. Rev. B. 30, 2776 (1984)

    Article  ADS  Google Scholar 

  15. Chegenia, M., Pourb, S.K., Dizaji, B.F.: Synthesis and characterization of novel antibacterial Sol-gel derived TiO2/Zn2TiO4/Ag nanocomposite as an active agent in sunscreens. Ceram. Int. 45, 24413–24418 (2019)

    Article  Google Scholar 

  16. Mrázek, J., Spanhel, L., Surýnek, M., Potel, M., Matějec, V.: Crystallization properties of RE-doped (RE = Eu, Er, Tm) Zn2TiO4 prepared by the sol–gel method. J. Alloys. Comp. 509, 4018–4024 (2011)

    Article  Google Scholar 

  17. Ruiz-Leóna, D., Mompeanb, F., Prado-Gonjalb, J., José, F.M., García-Hernandezb, M., Schmidtd, R.: Structural, magnetic and dielectric properties of the novel magnetic spinel compounds ZnCoSnO4 and ZnCoTiO4. J. Eur. Ceram. Soc. 38, 4986–4993 (2018)

    Article  Google Scholar 

  18. Nayak, S., Dasari, K., Joshi, D.C., Pramanik, P., Palai, R., Waske, A., Chauhan, R.N., Tiwari, N., Sarkar, T., Thota, S.: Low-temperature anomalous magnetic behavior of Co2TiO4 and Co2SnO4. J. Appl. Phys. 120, 163905 (2016)

    Article  ADS  Google Scholar 

  19. Liu, Y., Xu, D., Cui, T., Yu, H., Lia, X.F., Li, L.: Growth and properties of spinel structure Zn1.8Co0.2TiO4 single crystals by the optical floating zone method. RSC Adv. 9, 26436–26441 (2019)

    Article  Google Scholar 

  20. Chen, C., Ru, Q., Hu, S.J., An, B.N., Song, X., Hou, X.H.: Co2SnO4 nanocrystals anchored on graphene sheets as high-performance electrodes for lithium-ion batteries. Electrochim. Acta. 151, 203–213 (2015)

    Article  Google Scholar 

  21. Zhang, H.Z., Shi, X.G., Tian, A., Wang, L., Liu, C.W.: Electrochemical properties of Ti3+ doped Ag-Ti nanotube arrays coated with hydroxyapatite. Appl. Surf. Sci. 436, 579–584 (2018)

    Article  ADS  Google Scholar 

  22. Wang, B.S., Tong, P., Sun, Y.P., Zhu, X.B., Yang, Z.R., Song, W.H., Dai, J.M.: Observation of spin-glass behavior in antiperovskite compound SnCFe3. Appl. Phys. Lett. 97, 042508 (2010)

    Article  ADS  Google Scholar 

  23. Khan, M.N., Al-Dallal, S., Memon, A., Ahmed, A.: Spin glass behaviour in the Co2-xZnxTiO4 compound. J. Mater. Sci. 27, 5676–5680 (1992)

    Article  ADS  Google Scholar 

  24. Zu, L., Lin, S., Liu, Y., Lin, J.C., Yuan, B., Kan, X.C., Tong, P., Song, W.H., Sun, Y.P.: A first-order antiferromagnetic-paramagnetic transition induced by structural transition in GeNCr3. Appl. Phys. Lett. 108, 031906 (2016)

    Article  ADS  Google Scholar 

  25. Sohn, B.H., Cohen, R.E., Papaefthymiou, G.C.: Magnetic properties of iron oxide nanoclusters within microdomains of block copolymers. J. Magn. Magn. Mater. 182, 216–224 (1998)

    Article  ADS  Google Scholar 

  26. Zhang, L., Papaefthymiou, G.C., Ying, J.Y.: Synthesis and properties of γ′-Fe2O3 nanoclusters within mesoporous aluminosilicate matrices. J. Phys. Chem. B. 105, 7414–7423 (2001)

    Article  Google Scholar 

  27. Zhang, X.H., Yuan, Q., Han, J.C., Zhao, J.G., Jian, J.K., Zhang, Z.H., Song, B.: Observation of spin-glass behavior in antiperovskite compound Mn3Cu0.7Ga0.3N. Appl. Phys. Lett. 103, 022405 (2013)

    Article  ADS  Google Scholar 

  28. Lin, S., Shao, D.F., Lin, J.C., Zu, L., Kan, X.C., Wang, B.S., Huang, Y.N., Song, W.H., Lu, W.J., Tong, P., Sun, Y.P.: Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C. 3, 5683 (2015)

    Article  Google Scholar 

  29. Yuan, S.J., Xu, K., Li, Z., Yu, L.M., Kang, B.J., Cao, S.X.: Exchange bias and spin glassy behavior in low doped La1-xSrxCoO3 cobaltites. J. Appl. Phys. 105, 093910 (2009)

    Article  ADS  Google Scholar 

  30. Feng, W.J., Li, D., Ren, W.J., Li, Y.B., Li, W.F., Li, J., Zhang, Y.Q., Zhang, Z.D.: Glassy ferromagnetism in Ni3Sn-type Mn3.1Sn0.9. Phys. Rev. B. 73, 205105 (2006)

    Article  ADS  Google Scholar 

  31. Mydosh, J.A.: Spin Glasses: an experimental introduction. CRC Press (2014)

  32. Song, B., Bao, H.Q., Li, H., Lei, M., Peng, T.H., Jian, J.K., Liu, J., Wang, W.Y., Wang, W.J., Chen, X.L.: Observation of glassy ferromagnetism in Al-doped 4H-SiC. J. Am. Chem. Soc. 131, 1376–1377 (2009)

    Article  Google Scholar 

  33. Anand, V.K., Adroja, D.T., Hillier, A.D.: Ferromagnetic cluster spin-glass behavior in PrRhSn3. Phys. Rev. B. 85, 014418 (2012)

    Article  ADS  Google Scholar 

  34. Furdyna, J.K.: Diluted magnetic semiconductors. J. Appl. Phys. 64, R29 (1988)

    Article  ADS  Google Scholar 

  35. Aharoni, A., Wohlfarth, E.P.: The isothermal remanence (IRM) and the thermoremanence (TRM) of spin glasses. J. Appl. Phys. 55, 1664 (1984)

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Nos. 51872004 and 51802002) and the Key Program of Science and Technology Department of Anhui Province (Grant No. S201904a09020074).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xucai Kan or Xiansong Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Kan, X., Liu, X. et al. Spin-Glass Behavior in Spinel Compound ZnCoTiO4. J Supercond Nov Magn 33, 3745–3752 (2020). https://doi.org/10.1007/s10948-020-05642-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-020-05642-8

Keywords

Navigation