Skip to main content
Log in

Structural, Bulk Permittivity, and Magnetic Properties of Lead-Free Electronic Material: Ba1Bi1Cu1Fe1Ni1Ti3O12

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

In this report, Ba1Bi1Cu1Fe1Ni1Ti3O12 (BBCFNTO termed further) ceramics were synthesized using a conventional ceramic processing route. The formation of multiple phases has been confirmed from by the XRD pattern at room temperature. The surface micrograph indicates the uniform distribution of grains with distinct grain boundary. The co-relation between the impedance and dielectric parameters was realized by using a phase sensitive meter over a good temperature and frequency range. The temperature- and frequency-dependent dielectric properties are linked to the conduction mechanism. The dielectric constant (K) and loss (tanδ) are increased sharply at high-temperature region, which is expected to be the onset of dipolar relaxation phenomena. The contribution of grain boundary (GBs) and grain (Gs) effects can be identified using the complex impedance spectroscopy. This synthesized material is investigated to model multifunctional devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.K Hong, J.J. Lee, Magnetic supercapacitors, US Patent, US 2015/0179345 A1, (2015)

  2. Subramanian, M.A., Li, D., Duan, N., Reisnet, B.A., Sleight, A.W.: High dielectric constant in ACu3Ti4O12 and ACu3Ti3FeO12 phases. J. Solid St. Chem. 151, 323–325 (2000)

    Article  ADS  Google Scholar 

  3. Homes, C.C., Vogt, T., Shapiro, S.M., Wakimoto, S., Ramirez, A.P.: Optical response of high-dielectric-constant perovskite-related oxide. Science. 27, 673 (2001)

    Article  ADS  Google Scholar 

  4. Schmidt, R., Stennett, M.C., Hyatt, N.C., Pokorny, J., Prado-Gonjal, J., Li, M., Sinclair, D.C.: Effects of sintering temperature on the internal barrier layercapacitor (IBLC) structure in Ca1Cu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram. Soc. 32, 3313–3323 (2012)

    Article  Google Scholar 

  5. Dong, W., Hu, W., Berlie, A., Lau, K., Chen, H., Withers, R.L., Liu, Y.: Colossal dielectric behavior of Ga + Nb co-doped rutile TiO2. ACS Applied Materials &Interfaces. 7, 25321–25325 (2015)

    Article  Google Scholar 

  6. Ribeiro, W.C., Joanni, E., Savu, R., Bueno, P.R.: Nanoscale effects and polaronic relaxation in compounds. Solid State Commun. 151, 173–176 (2011)

    Article  ADS  Google Scholar 

  7. Nachaithong, T., Thongbai, P., Maensiri, S.: Colossal permittivity in(In1/2Nb1/2)xTi1-xO2 ceramics prepared by a glycine nitrate process. J. Eur.Ceram. Soc. 37, 655–660 (2017)

    Article  Google Scholar 

  8. Sahu, M., Choudhary, R.N.P., Das, S., Otta, S., Roul, B.K.: Inter-grain mediated intrinsic and extrinsic barrier layer network mechanism involved in Ca1Cu3Ti4O12 bulk ceramic. J. Mat. Science: Materials in Electronics. 28, 15676–15684 (2017)

    Google Scholar 

  9. T. Priyatham, Ranjit Bauri, Synthesis and characterization of nanocrystalline Ni–YSZ cermet anode for SOFC, 61, 54–58, (2010)

  10. N. Kumar, A. Shukla, R.N.P. Choudhary, Development of lead-free multifunctional materials Bi(Co0.45Ti0.45Fe0.10)O3 , 28, 308–314, (2018)

  11. S Nath, S K Barick, S Hajra, RNP Choudhary, Studies of structural, impedance spectroscopy and magnetoelectric properties of (SmLi)1/2)(Fe2/3Mo1/3)O3 electroceramics, J. Mater. Sci. Mater. Electron. 29: 12251–12257 (2018)

  12. Purohit, V., Padhee, R., Choudhary, R.N.P.: Dielectric and impedance spectroscopy of Bi(Ca0.5Ti0.5)O3 ceramic. Ceram. Int. 44, 3993–3999 (2018)

    Article  Google Scholar 

  13. Shaw, T.M., Trolier-McKinstry, S., McIntrye, P.C.: The properties of ferroelectric films at small dimensions. Annu. Rev. Mater. Sci. 30, 263–298 (2000)

    Article  ADS  Google Scholar 

  14. Arlt, G.: The influence of microstructure on the properties of ferroelectric ceramics. Ferroelectrics. 104, 217–227 (1990)

    Article  Google Scholar 

  15. Mudinepalli, V.R., Feng, L., Lin, W.-C., Murthy, B.S.: Effect of grain size on dielectric and ferroelectric properties of nanostructured Ba0.8Sr0.2TiO3 ceramics. Journal of Advanced Ceramics. 4, 46–53 (2015)

    Article  Google Scholar 

  16. A. K, S., Dutta, D.P., Roy, M., V.D, S.: Magnetic and dielectric properties of NiCrFeO4 prepared by solution combustion method. Mater. Res. Bull. 94, 154–159 (2017)

    Article  Google Scholar 

  17. Koop, C.G.: On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies. Phys. Rev. 83, 121–124 (1951)

    Article  ADS  Google Scholar 

  18. Pawar, R.P., Puri, V.: Structural, electrical and dielectric properties of (Sr1−xCax) · MnO3 (0 ≤ x ≤ 1.0) ceramics. Ceram. Int. 40, 10423–10430 (2014)

    Article  Google Scholar 

  19. Jonscher, A.K.: The ‘universal’ dielectric response. Nature. 267, 673–679 (1977)

    Article  ADS  Google Scholar 

  20. Behera, B., Nayak, P., Choudhary, R.N.P.: Structural and impedance properties of KBa2V5O15 ceramics. Mat. Res. Bull. 43, 401–410 (2008)

    Article  Google Scholar 

  21. Sen, S., Choudhary, R.N.P.: Impedance studies of Sr modified BaZr0.05Ti0.95O3 ceramics. Mater. Chem. Phys. 87, 256–263 (2004)

    Article  Google Scholar 

  22. Brahma, S., Choudhary, R.N.P., Thakur, A.K.: AC impedance analysis of LaLiMo2O8 electroceramics. Phys. B. 355, 188–201 (2005)

    Article  ADS  Google Scholar 

  23. Ganguly, P., Devi, S., Jha, A.K., Deori, K.L.: Dielectric and pyroelectric studies of tungsten-bronze structured Ba5SmTi3Nb7O30 ferroelectric ceramics. Ferroelectrics. 381, 111–119 (2009)

    Article  Google Scholar 

  24. Karoui, K., Ben Rhaiem, A., Guidara, K.: Dielectric properties and relaxation behavior of [TMA]2Zn0.5Cu0.5Cl4 compound. Physica B. 407, 489–493 (2012)

    Article  ADS  Google Scholar 

  25. Jayswal, M.S., Kanchan, D.K., Sharma, P., Gondaliya, N.: Relaxation process in PbI2–Ag2 O–V2O5–B2O3 system: dielectric, AC conductivity and modulus studies. Mater. Sci. Eng. B. 178, 775–784 (2013)

    Article  Google Scholar 

  26. Adnan, S.B.R.S., Mohamed, N.S.: Effects of Sn substitution on the properties of Li4SiO4 ceramic electrolyte. Solid State Ionics. 262, 559–562 (2014)

    Article  Google Scholar 

  27. Liu, L., Shi, D., Zheng, S., Huang, Y., Wu, S., Li, Y., Fang, L., Hu, C.: Polaron relaxation and non-ohmic behavior in CaCu3Ti4O12 ceramics with different cooling methods. Mater Chem Phy. 139, 3844–3850 (2013)

    Article  Google Scholar 

  28. Huang, Y., Liu, L., Shi, D., Wu, S.S., Zheng, S., Fang, L., Hu, C., Elouadid, B.: Giant dielectric permittivity and non-linear electrical behavior in CaCu3Ti4O12 varistors from the molten-salt synthesized powder. Ceram. Int. 39, 6063–6068 (2013)

    Article  Google Scholar 

  29. Sahu, M., Hajra, S., Choudhary, R.N.P.: Structural, electrical and dielectric characteristics of strontium-modified CaCu3Ti4O12. SN Applied Sciences. 1(13), (2019)

  30. Wang, B., Gong, L., Ma, G., Wang, S., Zhou, Z.: Investigation on modified BiFeO3—based perovskite ceramics. J. Appl. Ceram. Technol. 12, 157–162 (2015)

    Article  Google Scholar 

  31. Liu, X.H., Xu, Z., Wei, X.Y., Yao, X.: Characterization of 0.7Bi(Fe0.9Cr0.1)O3–0.2PbTiO3–0.1BaTiO3 multiferroic ceramics derived from sol–gel. J. Am. Ceramic. Soc. 93, 1245–1247 (2010)

    Google Scholar 

  32. Islam, M.R., Islam, M.S., Zubair, M.A., Usama, H.M., Azam, M.S., Sharif, A.: Evidence of superparamagnetism and improved electrical properties in Ba and Ta co-doped BiFeO3 ceramics. J. Alloys Compd. 735, 2584–2596 (2018)

    Article  Google Scholar 

  33. Shafi, K.V.P., Gedanken, A., Prozorov, R., Balogh, J.: Sonochemical preparation and size-dependent properties of nanostructured CoFe2O4 particles. Chem. Mater. 10, 3445–3450 (1998)

    Article  Google Scholar 

Download references

Acknowledgments

MS would like to give thanks to Dr. Arijeet Mitra, IOP, Bhubaneswar who carried out some experiments.

Author information

Authors and Affiliations

Authors

Contributions

Miss M Sahu fabricated the sample and done the electrical characterization. Mr. Sugato has prepared draft. Dr. RNP Choudhary supervised the work.

Corresponding author

Correspondence to Madhusmita Sahu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Hajra, S. & Choudhary, R.N.P. Structural, Bulk Permittivity, and Magnetic Properties of Lead-Free Electronic Material: Ba1Bi1Cu1Fe1Ni1Ti3O12. J Supercond Nov Magn 32, 2613–2621 (2019). https://doi.org/10.1007/s10948-019-4996-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-019-4996-5

Keywords

Navigation