Skip to main content
Log in

Electronic Transport on W-Rich Films Deposited by Focused Ion Beam

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The electrical transport properties of W films obtained through focused ion beam deposition reveal a transition from weakly insulating to metallic behavior for increasing film thickness. At low temperatures, all the films make a transition to the superconducting state. The observed stochastic distribution of the critical superconducting current is related to the occurrence of phase slip processes as documented by the statistical distribution of the depairing current and its temperature dependence according to the thermally activated model of the superconducting phase in a tilted washboard potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Altshuler, B.L.: Temperature dependence of impurity conductivity of metals at low temperatures. Sov. Phys. JETP 48(4), 670–675 (1978). http://adsabs.harvard.edu/abs/1978JETP...48..670A

    ADS  Google Scholar 

  2. Astafiev, O.V., Ioffe, L.B., Kafanov, S., Pashkin, Y.A., Arutyunov, K.Y., Shahar, D., Cohen, O., Tsai, J.S.: Coherent quantum phase slip. Nature 484(7394), 355–8 (2012). doi:10.1038/nature10930

    Article  ADS  Google Scholar 

  3. Bardeen, J.: Critical Fields and Currents in Superconductors. Rev. Mod. Phys. 34(4), 667–681 (1962). doi:10.1103/RevModPhys.34.667

    Article  ADS  MATH  Google Scholar 

  4. Bezryadin, A., Lau, C., Tinkham, M.: Quantum suppression of superconductivity in ultrathin nanowires. Nature 404(6781), 971–4 (2000). doi:10.1038/35010060

    Article  ADS  Google Scholar 

  5. Blauner, P.G.: Focused ion beam induced deposition of low-resistivity gold films. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 7(6), 1816 (1989). doi:10.1116/1.584465. http://scitation.aip.org/content/avs/journal/jvstb/7/6/10.1116/1.584465

    Article  ADS  Google Scholar 

  6. Chakravorty, M., Das, K., Raychaudhuri, A.K., Naik, J.P., Prewett, P.D.: Temperature dependent resistivity of platinum-carbon composite nanowires grown by focused ion beam on SiO2/Si substrate. Microelectron. Eng. 88(11), 3360–3364 (2011). doi:10.1016/j.mee.2011.07.012

    Article  Google Scholar 

  7. Choi, D., Moneck, M., Liu, X., Oh, S.J., Kagan, C.R., Coffey, K.R., Barmak, K.: Crystallographic anisotropy of the resistivity size effect in single crystal tungsten nanowires. Scientific reports 3, 2591 (2013). doi:10.1038/srep02591. http://www.nature.com/srep/2013/130905/srep02591/full/srep02591.html?message-global=remove

    Article  ADS  Google Scholar 

  8. Cote, P.J., Meisel, L.V.: Resistivity in amorphous and disordered crystalline alloys. Phys. Rev. Lett. 39 (2), 102–105 (1977). doi:10.1103/PhysRevLett.39.102

    Article  ADS  Google Scholar 

  9. Courtois, H., Meschke, M., Peltonen, J.T., Pekola, J.P.: Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101(6), 067,002 (2008). doi:10.1103/PhysRevLett.101.067002

    Article  Google Scholar 

  10. Dai, J., Onomitsu, K., Kometani, R., Krockenberger, Y., Yamaguchi, H., Ishihara, S., Warisawa, S.: Superconductivity in tungsten-carbide nanowires deposited from the mixtures of W(CO) 6 and C 14 H 10. Jpn. J. Appl. Phys. 52(7R), 075,001 (2013). doi:10.7567/JJAP.52.075001. http://stacks.iop.org/1347-4065/52/i=7R/a=075001

    Article  Google Scholar 

  11. De Teresa, J.M., Cárdoba, R., Fernández-Pacheco, A., Montero, O., Strichovanec, P., Ibarra, M.R.: Origin of the difference in the resistivity of as-grown focused-ion- and focused-electronbeam-induced Pt nanodeposits. J. Nanomaterials 10, 11 (2009). doi:10.1155/2009/936863

  12. Della Ratta, A.D.: Focused-ion beam induced deposition of copper. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 11(6), 2195 (1993). doi:10.1116/1.586455. http://scitation.aip.org/content/avs/journal/jvstb/11/6/10.1116/1.586455

    Article  ADS  Google Scholar 

  13. Dhakal, P., McMahon, G., Shepard, S., Kirkpatrick, T., Oh, J.I., Naughton, M.J.: Direct-write, focused ion beam-deposited, 7 K superconducting C–Ga–O nanowire. Appl. Phys. Lett. 96(26), 262,511 (2010). doi:10.1063/1.3458863. http://scitation.aip.org/content/aip/journal/apl/96/26/10.1063/1.3458863

    Article  Google Scholar 

  14. Fenton, J.C., Warburton, P.A.: Monte Carlo simulations of thermal fluctuations in moderately damped Josephson junctions: Multiple escape and retrapping, switching- and return-current distributions, and hysteresis. Phys. Rev. B 78(5), 054,526 (2008). doi:10.1103/PhysRevB.78.054526

    Article  Google Scholar 

  15. Fernández-Pacheco, A., De Teresa, J., Córdoba, R., Ibarra, M.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79(17), 1–12 (2009). doi:10.1103/PhysRevB.79.174204

    Article  Google Scholar 

  16. Fulton, T.A., Dunkleberger, L.N.: Lifetime of the zero-voltage state in Josephson tunnel junctions. Phys. Rev. B 9(11), 4760–4768 (1974). doi:10.1103/PhysRevB.9.4760

    Article  ADS  Google Scholar 

  17. Giannuzzi, L.A., Stevie, F.A.: A review of focused ion beam milling techniques for TEM specimen preparation. Micron 30(3), 197–204 (1999). doi:10.1016/S0968-4328(99)00005-0

    Article  Google Scholar 

  18. Gibson, J.W., Hein, R.A.: Superconductivity of Tungsten. Phys. Rev. Lett. 12(25), 688–690 (1964). doi:10.1103/PhysRevLett.12.688

    Article  ADS  Google Scholar 

  19. Ginzburg, V., Landau, L.: Zh. Eksperim. i Teor. Fiz. 20, 1064 (1950)

    Google Scholar 

  20. Giordano, N.: Evidence for macroscopic quantum tunneling in one-dimensional superconductors. Phys. Rev. Lett. 61(18), 2137–2140 (1988). doi:10.1103/PhysRevLett.61.2137

    Article  ADS  Google Scholar 

  21. Guillamón, I., Suderow, H., Fernández-Pacheco, A., Sesé, J., Córdoba, R., Ibarra, M.R., Vieira, S.: Direct observation of melting in a two-dimensional superconducting vortex lattice. Nat. Phys. 5(9), 651–655 (2009). doi:10.1038/nphys1368. http://www.nature.com/nphys/journal/v5/n9/pdf/nphys1368.pdf

    Article  Google Scholar 

  22. Guillamón, I., Suderow, H., Vieira, S., Fernández-Pacheco, A., Sesé, J., Córdoba, R., De Teresa, J.M., Ibarra, M.R.: Nanoscale superconducting properties of amorphous W-based deposits grown with a focused-ion-beam. New J. Phys. 10, 093,005 (2008). doi:10.1088/1367-2630/10/9/093005

    Article  Google Scholar 

  23. Helfand, E., Werthamer, N.R.: Temperature and purity dependence of the superconducting critical field, H c 2 . II. Phys. Rev. 147(1), 288–294 (1966). doi:10.1103/PhysRev.147.288

    Article  ADS  MATH  Google Scholar 

  24. Kim, S.H., Somorjai, G.A.: Stereospecific ZieglerNatta model catalysts produced by electron beam-induced deposition of TiCl 4 : deposition kinetics, film structure, and surface structure. The Journal of Physical Chemistry B 106(6), 1386–1391 (2002). doi:10.1021/jp013239q

    Article  Google Scholar 

  25. Krasnov, V.M., Bauch, T., Intiso, S., Hürfeld, E., Akazaki, T., Takayanagi, H., Delsing, P.: Collapse of thermal activation in moderately damped Josephson junctions. Phys. Rev. Lett. 95(15), 157,002 (2005). doi:10.1103/PhysRevLett.95.157002

    Article  Google Scholar 

  26. Langer, J.S., Ambegaokar, V.: Intrinsic resistive transition in narrow superconducting channels. Phys. Rev. 164(2), 498–510 (1967). doi:10.1103/PhysRev.164.498

    Article  ADS  Google Scholar 

  27. Langfischer, H., Basnar, B., Hutter, H., Bertagnolli, E.: Evolution of tungsten film deposition induced by focused ion beam. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 20(4), 1408 (2002). doi:10.1116/1.1486230

    Article  ADS  Google Scholar 

  28. Lau, C.N., Markovic, N., Bockrath, M., Bezryadin, A., Tinkham, M.: Quantum phase slips in superconducting nanowires. Phys. Rev. Lett. 87(21), 217,003 (2001). doi:10.1103/PhysRevLett.87.217003

    Article  Google Scholar 

  29. Li, P., Wu, P.M., Bomze, Y., Borzenets, I.V., Finkelstein, G., Chang, A.M.: Switching currents limited by single phase slips in one-dimensional superconducting Al nanowires. Phys. Rev. Lett. 107(13), 137,004 (2011). doi:10.1103/PhysRevLett.107.137004

    Article  Google Scholar 

  30. Li, W., Fenton, J. C., Wang, Y., McComb, D. W., Warburton, P.A.: Tunability of the superconductivity of tungsten films grown by focused-ion-beam direct writing, vol. 104 (2008)

  31. Li, W., Fenton, J.C., Warburton, P.A.: Focused-ion-beam direct-writing of ultra-thin superconducting tungsten composite films. IEEE Trans. Appl. Supercond. 19(3), 2819–2822 (2009). doi:10.1109/TASC.2009.2019251

    Article  ADS  Google Scholar 

  32. Likharev, K.: Superconducting weak links. Rev. Mod. Phys. 51(1), 101–159 (1979). doi:10.1103/RevModPhys.51.101

    Article  ADS  Google Scholar 

  33. Lin, J.F., Bird, J.P., Rotkina, L., Bennett, P.A.: Classical and quantum transport in focused-ion-beam-deposited Pt nanointerconnects. Appl. Phys. Lett. 82(5), 802–804 (2003). doi:10.1063/1.1541940

    Article  ADS  Google Scholar 

  34. Little, W.A.: Decay of Persistent Currents in Small Superconductors. Phys. Rev. 156(2), 396–403 (1967). doi:10.1103/PhysRev.156.396

    Article  ADS  Google Scholar 

  35. Longobardi, L., Massarotti, D., Rotoli, G., Stornaiuolo, D., Papari, G., Kawakami, A., Pepe, G.P., Barone, A., Tafuri, F.: Thermal hopping and retrapping of a Brownian particle in the tilted periodic potential of a NbN/MgO/NbN Josephson junction. Phys. Rev. B 84(18), 184,504 (2011). doi:10.1103/PhysRevB.84.184504

    Article  Google Scholar 

  36. Luxmoore, I.J., Ross, I.M., Cullis, A.G., Fry, P.W., Orr, J., Buckle, P.D., Jefferson, J.H.: Low temperature electrical characterisation of tungsten nano-wires fabricated by electron and ion beam induced chemical vapour deposition. Thin Solid Films 515(17), 6791–6797 (2007). doi:10.1016/j.tsf.2007.02.029. http://www.sciencedirect.com/science/article/pii/S0040609007001861

    Article  ADS  Google Scholar 

  37. Martinis, J.M., Devoret, M.H., Clarke, J.: Experimental tests for the quantum behavior of a macroscopic degree of freedom: The phase difference across a Josephson junction. Phys. Rev. B 35(10), 4682–4698 (1987). doi:10.1103/PhysRevB.35.4682

    Article  ADS  Google Scholar 

  38. Massarotti, D., Longobardi, L., Galletti, L., Stornaiuolo, D., Montemurro, D., Pepe, G., Rotoli, G., Barone, A., Tafuri, F.: Escape dynamics in moderately damped Josephson junctions (Review Article). Low Temperature Physics 38(4), 263 (2012). doi:10.1063/1.3699625. http://scitation.aip.org/content/aip/journal/ltp/38/4/10.1063/1.3699625

    Article  ADS  Google Scholar 

  39. McCumber, D.E., Halperin, B.I.: Time scale of intrinsic resistive fluctuations in thin superconducting wires. Phys. Rev. B 1(3), 1054–1070 (1970). doi:10.1103/PhysRevB.1.1054

    Article  ADS  Google Scholar 

  40. Mooij, J.E., Harmans, C.J.P.M.: Phase-slip flux qubits. New J. Phys. 7(1), 219–219 (2005). doi:10.1088/1367-2630/7/1/219. http://stacks.iop.org/1367-2630/7/i=1/a=219

    Article  ADS  MathSciNet  Google Scholar 

  41. Mooij, J.E., Nazarov, Y.V.: Superconducting nanowires as quantum phase-slip junctions. Nat. Phys. 2(3), 169–172 (2006). doi:10.1038/nphys234

    Article  Google Scholar 

  42. Osofsky, M.S., Soulen, R.J., Claassen, J.H., Trotter, G., Kim, H., Horwitz, J.S.: New insight into enhanced superconductivity in metals near the metal-insulator transition. Phys. Rev. Lett. 87(19), 197,004 (2001). doi:10.1103/PhysRevLett.87.197004

    Article  Google Scholar 

  43. Peñate Quesada, L., Mitra, J., Dawson, P.: Non-linear electronic transport in Pt nanowires deposited by focused ion beam. Nanotechnology 18(21), 215,203 (2007). doi:10.1088/0957-4484/18/21/215203. http://iopscience.iop.org/0957-4484/18/21/215203/pdf/0957-4484_18_21_215203.pdf

    Article  Google Scholar 

  44. Sadki, E.S., Ooi, S., Hirata, K.: Focused-ion-beam-induced deposition of superconducting nanowires. Appl. Phys. Lett. 85(25), 6206–6208 (2004). doi:10.1063/1.1842367

    Article  ADS  Google Scholar 

  45. Sahu, M., Bae, M.H., Rogachev, A., Pekker, D., Wei, T.C., Shah, N., Goldbart, P.M., Bezryadin, A.: Individual topological tunnelling events of a quantum field probed through their macroscopic consequences. Nat. Phys. 5(7), 503–508 (2009). doi:10.1038/nphys1276

    Article  Google Scholar 

  46. Shah, N., Pekker, D., Goldbart, P.M.: Inherent Stochasticity of superconductor-resistor switching behavior in nanowires. Phys. Rev. Lett. 101(20), 207,001 (2008). doi:10.1103/PhysRevLett.101.207001

    Article  Google Scholar 

  47. Skocpol, W.J.: Self-heating hotspots in superconducting thin-film microbridges. Journal of Applied Physics 45(9), 4054 (1974). doi:10.1063/1.1663912. http://scitation.aip.org/content/aip/journal/jap/45/9/10.1063/1.1663912

    Article  ADS  Google Scholar 

  48. Spoddig, D., Schindler, K., Rödiger, P., Barzola-Quiquia, J., Fritsch, K., Mulders, H., Esquinazi, P.: Transport properties and growth parameters of PdC and WC nanowires prepared in a dual-beam microscope. Nanotechnology 18(49), 495,202 (2007). doi:10.1088/0957-4484/18/49/495202. http://www.ncbi.nlm.nih.gov/pubmed/20442468

    Article  Google Scholar 

  49. Sun, Y., Wang, J., Zhao, W., Tian, M., Singh, M., Chan, M.H.W.: Voltage-current properties of superconducting amorphous tungsten nanostrips. Scientific reports 3, 2307 (2013). doi:10.1038/srep02307. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3725510&tool=pmcentrez&rendertype=abstract

  50. Teresa, J.M.D., Fernández-Pacheco, A., Córdoba, R., Sesé, J., Ibarra, M.R., Guillamón, I., Suderow, H., Vieira, S.: Transport properties of superconducting amorphous W-based nanowires fabricated by focused-ion-beam-induced-deposition for applications in Nanotechnology. Mater. Res. Soc. Symp. Proc. 1180, CC04–09 (2009). doi:10.1557/PROC-1180-CC04-09

    Article  Google Scholar 

  51. Tinkham, M., Free, J., Lau, C., Markovic, N.: Hysteretic I-V curves of superconducting nanowires. Phys. Rev. B 68(13), 134,515 (2003). doi:10.1103/PhysRevB.68.134515

    Article  Google Scholar 

  52. Utke, I., Hoffmann, P., Melngailis, J.: Gas-assisted focused electron beam and ion beam processing and fabrication. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures 26(4), 1197 (2008). doi:10.1116/1.2955728. http://scitation.aip.org/content/avs/journal/jvstb/26/4/10.1116/1.2955728

  53. Vion, D., Götz, M., Joyez, P., Esteve, D., Devoret, M.H.: Thermal activation above a dissipation barrier: switching of a small Josephson junction. Phys. Rev. Lett. 77(16), 3435–3438 (1996). doi:10.1103/PhysRevLett.77.3435

    Article  ADS  Google Scholar 

  54. Werthamer, N.R., Helfand, E., Hohenberg, P.C.: Temperature and purity dependence of the superconducting critical field, H_{c2}. III. Electron Spin and Spin-Orbit Effects. Phys. Rev. 147(1), 295–302 (1966). doi:10.1103/PhysRev.147.295

    Article  ADS  Google Scholar 

  55. Ziman, J.M.: Electrons and phonons: The theory of transport phenomena in solids oxford university press (1961)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Mongillo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mongillo, M., Jansen, L., Audoit, G. et al. Electronic Transport on W-Rich Films Deposited by Focused Ion Beam. J Supercond Nov Magn 30, 2261–2270 (2017). https://doi.org/10.1007/s10948-017-4028-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-017-4028-2

Keywords

Navigation