Skip to main content

Advertisement

Log in

Fabrication, Transport Current Testing, and Finite Element Analysis of MgB2 Racetrack Coils

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

This paper reports the fabrication, transport current testing, and finite element analysis of magnesium diboride (MgB2) racetrack coils made by a wind and react method at 4.2 K in self-field. This type of coil can be potentially appropriate for applications aimed at building block coils that can serve as wind turbine generator coils and correction coils for fusion magnets. We have fabricated racetrack coils using an in situ monofilament MgB2/Niobium/Monel wire; each coil had a wire length of 45 m and 80 turns. The best measured critical current of the coil was 134.9 A at 4.2 K and self-field of 0.55 T. In addition, the magnetic field and the Lorentz force contribution in the coil were estimated using finite element analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Patel, D., Hossain, M.S.A., Motaman, A., Barua, S., Shahabuddin, M., Kim, J.H.: Rational design of MgB2 conductors toward practical applications. Cryogenics 63, 160–165 (2014)

  2. Hossain, M.S.A., Senatore, C., Rindfleisch, M., Flükiger, R.: Improvement of j c by cold high pressure densification of binary, 18-filament in situ MgB2 wires. Supercond. Sci. Technol. 24, 075013 (2011)

    Article  ADS  Google Scholar 

  3. Hossain, M.S.A., Motaman, A., Barua, S., Patel, D., Mustapic, M., Kim, J.H., Maeda, M., Rindfleisch, M., Tomsic, M., Cicek, O., Melisek, T., Kopera, L., Kario, A., Ringsdorf, B., Runtsch, B., Jung, A., Dou, S.X., Goldacker, W., Kovac, P.: The roles of CHPD: superior critical current density and n-value obtained in binary in situ MgB2 cables. Supercond. Sci. Technol. 27, 095016 (2014)

    Article  ADS  Google Scholar 

  4. Kim, J.H., Oh, S., Kumakura, H., Matsumoto, A., Heo, Y.-U., Song, K.-S., Kang, Y.-M., Maeda, M., Rindfleisch, M., Tomsic, M., Choi, S., Dou, S.X.: Tailored materials for high-performance MgB2 wire. Adv. Mater. 23, 4942–4946 (2011)

    Article  Google Scholar 

  5. Kim, J.H., Oh, S., Heo, Y.U., Hata, S., Kumakura, H., Matsumoto, A., Mitsuhara, M., Choi, S., Shimada, Y., Maeda, M., MacManus-Driscoll, J.L., Dou, S.X.: Microscopic role of carbon on MgB2 wire for critical current density comparable to NbTi. NPG Asia Mater. 4, e3 (2012)

    Article  Google Scholar 

  6. Kumakura, H., Hur, J., Togano, K., Matsumoto, A., Wada, H., Kimura, K.: Superconducting properties of diffusion-processed multifilamentary MgB2 wires. IEEE Trans. Appl. Supercond. 21, 2643–2648 (2011)

    Article  ADS  Google Scholar 

  7. Senatore, C., Al Hossain, M.S., Flükiger, R.: Enhanced connectivity and percolation in binary and doped in situ MgB2 wires after cold high pressure densification. IEEE Trans. Appl. Supercond. 21, 2680–2685 (2011)

    Article  ADS  Google Scholar 

  8. Braccini, V., Nardelli, D., Penco, R., Grasso, G.: Development of ex situ processed MgB2 wires and their applications to magnets. Phys. C 456, 209–217 (2007)

    Article  ADS  Google Scholar 

  9. Grasso, G., Malagoli, A., Ferdeghini, C., Roncallo, S., Braccini, V., Siri, A.S., Cimberle, M.R.: Large transport critical currents in unsintered MgB2 superconducting tapes. Appl. Phys. Lett. 79, 230–232 (2001)

    Article  ADS  Google Scholar 

  10. Tomsic, M., Rindfleisch, M., Yue, J., McFadden, K., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W.: Overview of MgB2 superconductor applications. Int. J. Appl. Ceram. Technol. 4, 250–259 (2007)

    Article  Google Scholar 

  11. Patel, D., Maeda, M., Choi, S., Kim, S.J., Shahabuddin, M., Parakandy, J.M., Hossain, M.S.A., Kim, J.H.: Multiwalled carbon nanotube-derived superior electrical, mechanical and thermal properties in MgB2 wires. Scr. Mater. 88, 13–16 (2014)

    Article  Google Scholar 

  12. Li, G.Z., Sumption, M.D., Susner, M.A., Yang, Y., Reddy, K.M., Rindfleisch, M.A., Tomsic, M.J., Thong, C.J., Collings, E.W.: The critical current density of advanced internal-Mg-diffusion-processed MgB2 wires. Supercond. Sci. Technol. 25, 115023 (2012)

    Article  ADS  Google Scholar 

  13. Hossain, M.S.A., Gazder, A.A., Barua, S., Motaman, A., Patel, D., Kim, J.H., Kario, A., Ringsdorf, B., Runtsch, B., Jung, A., Rindfleisch, M., Dou, S.X., Goldacker, W.: Development of high current capacity mono- and 18-filament MgB2 cables by varying the twist pitch. IEEE Trans. Appl. Supercond. 24, 1–4 (2014)

    Article  Google Scholar 

  14. Tomsic, M., Rindfleisch, M., Yue, J.J., McFadden, K., Doll, D., Phillips, J., Sumption, M.D., Bhatia, M., Bohnenstiehl, S., Collings, E.W.: Development of magnesium diboride (MgB2) wires and magnets using in situ strand fabrication method. Phys. C 456, 203–208 (2007)

    Article  ADS  Google Scholar 

  15. Vinod, K., Kumar, R.G.A., Syamaprasad, U.: Prospects for MgB2 superconductors for magnet application. Supercond. Sci. Technol. 20, R1 (2007)

    Article  Google Scholar 

  16. Sanz, S., Arlaban, T., Manzanas, R., Tropeano, M., Funke, R., Kováč, P., Yang, Y., Neumann, H., Mondesert, B.: Superconducting light generator for large offshore wind turbines. J. Phys.: Conf. Ser. 507, 032040 (2014)

    Google Scholar 

  17. Kalsi, S.S.: Superconducting wind turbine generator employing MgB2 windings both on rotor and stator. IEEE Trans. Appl. Supercond., 24 (2014)

  18. Abrahamsen, A.B., Magnusson, N., Jensen, B.B., Liu, D., Polinder, H.: Design of an MgB2 race track coil for a wind generator pole demonstration. J. Phys.: Conf. Ser. 507, 032001 (2014)

    Google Scholar 

  19. Kajikawa, K., Uchida, Y., Nakamura, T., Kobayashi, H., Wakuda, T., Tanaka, K.: Development of stator windings for fully superconducting motor with MgB2 wires. IEEE Trans. Appl. Supercond. 23, 5201604 (2013)

    Article  Google Scholar 

  20. Ling, J., Voccio, J., Kim, Y., Hahn, S., Bascunan, J., Park, D.K., Iwasa, Y.: Monofilament MgB2 wire for a whole-body MRI magnet: superconducting joints and test coils. IEEE Trans. Appl. Supercond. 23, 6200304 (2013)

    Article  Google Scholar 

  21. Modica, M., Angius, S., Bertora, L., Damiani, D., Marabotto, M., Nardelli, D., Perrella, M., Razeti, M., Tassisto, M.: Design, construction and tests of MgB,2 coils for the development of a cryogen free magnet. IEEE Trans. Appl Supercond. 17, 2196–2199 (2007)

    Article  ADS  Google Scholar 

  22. Baig, T., Yao, Z., Doll, D., Tomsic, M., Martens, M.: Conduction cooled magnet design for 1.5 T, 3.0 T and 7.0 T MRI systems. Supercond. Sci. Technol. 27, 125012 (2014)

    Article  ADS  Google Scholar 

  23. Ballarino, A.: Development of superconducting links for the Large Hadron Collider machine. Supercond. Sci. Technol. 27, 044024 (2014)

    Article  ADS  Google Scholar 

  24. Devadas, K.M., Rahul, S., Thomas, S., Varghese, N., Pradhan, S., Syamaprasad, U.: An effort toward development of MgB2-based current leads with 2000-A rating. IEEE Trans. Appl. Supercond. 24, 6200205 (2014)

    Article  Google Scholar 

  25. Abrahamsen, A.B., Magnusson, N., Jensen, B.B., Runde, M.: Large superconducting wind turbine generators. S. Pap. Deep Sea Off. Wind R&D Conf. Energy Procedia 24, 60–67 (2012)

    Google Scholar 

  26. Jensen, B.B., Mijatovic, N., Abrahamsen, A.B.: Development of superconducting wind turbine generators. J. Renew. Sustain. Energy 5, 023137 (2013)

    Article  Google Scholar 

  27. Liang, Y.C., Rotaru, M.D., Sykulski, J.K.: Electromagnetic simulations of a fully superconducting 10-MW-class wind turbine generator. IEEE Trans. Appl. Supercond., 23 (2013)

  28. Keysan, O., Olczak, D., Mueller, M.A.: A modular superconducting generator foroffshore wind turbines. J. Supercond. Nov. Magneti. 26, 2103–2108 (2013)

    Article  Google Scholar 

  29. Sumption, M.D., Bhatia, M., Rindfleisch, M., Phillips, J., Tomsic, M., Collings, E.W.: MgB2/cu racetrack coil winding, insulating, and testing. IEEE Trans. Appl. Supercond. 15, 1457–1460 (2005)

    Article  Google Scholar 

  30. Sumption, M.D., Bohnenstiehl, S., Buta, F., Majoros, M., Kawabata, S., Tomsic, M., Rindfleisch, M., Phillips, J., Yue, J., Collings, E.W.: Wind and react and react and wind MgB2 solenoid, racetrack and pancake coils. IEEE Trans. Appl. Supercond. 17, 2286–2290 (2007)

    Article  ADS  Google Scholar 

  31. Sumption, M.D., Bhatia, M., Buta, F., Bohnenstiehl, S., Tomsic, M., Rindfleisch, M., Yue, J., Phillips, J., Kawabata, S., Collings, E.W.: Multifilamentary MgB2-based solenoidal and racetrack coils. Phys. C 458, 12–20 (2007)

    Article  ADS  Google Scholar 

  32. Pradhan, S., Brahmbhatt, P., Sudha, J.D., Unnikrishnan, J.: Influence of manganese acetyl acetonate on the cure-kinetic parameters of cyanate ester-epoxy blend systems in fusion relevant magnets winding packs. J. Therm. Anal. Calorim. 105, 301–311 (2011)

    Article  Google Scholar 

  33. Pradhan, S., Sharma, A.N., Tanna, V.L., Zkhan, Z., Prasad, U., Doshi, K., Raval, D.C., Khan, F., Gupta, N.C., Tank, J., Gupta, M.K., Santra, P., Biswas, P., Parekh, T., Masand, H., Sharma, D., Srivastava, A., Patel, H.: SST-1 status and plans. IEEE Trans. Plasm Sci. 40, 614–621 (2012)

    Article  ADS  Google Scholar 

  34. Kim, J.H., Dou, S.X., Matsumoto, A., Choi, S., Kiyoshi, T., Kumakura, H.: Correlation between critical current density and n-value in MgB2/nb/monel superconductor wires. Phys. C 470, 1207–1210 (2010)

    Article  ADS  Google Scholar 

  35. Wilson, M.N.: Superconducting Magnets. Oxford University Press, Oxford (1983)

    Google Scholar 

  36. Motaman, A., Barua, S., Patel, D., Maeda, M., Cheong, K., Kim, J.H., Dou, S.X., Al Hossain, M.S.: Power-law relationship between critical current density, microstructure, and the n-value in MgB2 superconductor wires. J. Supercond. Nov. Magn. 27, 1643–1645 (2014)

    Article  Google Scholar 

  37. Li, G.Z., Yang, Y., Susner, M.A., Sumption, M.D., Collings, E.W.: Critical current densities and n-values of MgB2 strands over a wide range of temperatures and fields. Supercond. Sci. Technol. 25, 025001 (2012)

    Article  ADS  Google Scholar 

  38. Warnes, W.H., Larbalestier, D.C.: Critical current distributions in superconducting composites. Cryogenics 26, 643–653 (1986)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Department of Atomic Energy, India, Australian Research Council (DE130101247, FT110100170), and 2014 UOW-URC grants. The authors would like to thank Dr. Tania Silver for the helpful discussions. The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King Saud University for its funding of this research through the Research Group Project (RGP-290).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Subrata Pradhan or Md Shahriar Al Hossain.

Additional information

Ananya Kundu and Dipak Patel contributed equally for this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kundu, A., Patel, D., Kumar, N. et al. Fabrication, Transport Current Testing, and Finite Element Analysis of MgB2 Racetrack Coils. J Supercond Nov Magn 30, 2957–2962 (2017). https://doi.org/10.1007/s10948-016-3870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-016-3870-y

Keywords

Navigation