Skip to main content
Log in

New Theoretical Investigation on the Electronic Structure and Magnetic Interaction for Fluorides MnF2

  • Original Paper
  • Published:
Journal of Superconductivity and Novel Magnetism Aims and scope Submit manuscript

Abstract

The self-consistent ab initio calculations, based on density functional theory (DFT) approach and using full-potential linear augmented plane wave (FLAPW) method, are performed to investigate both electronic and magnetic properties of the MnF2 compounds. Polarized spin and spin-orbit coupling are included in calculations within the framework of the ferromagnetic state between two adjacent Mn atoms. Magnetic moment considered to lie along (001) axis is computed. The antiferromagnetic and ferromagnetic energies of MnF2 systems are calculated. Obtained data from ab initio calculations are used as input for the high-temperature series expansion calculations combined with the Padé approximant to compute the Néel temperature and critical exponent. The exchange interactions between the magnetic atoms M–Mn in MnF2 are calculated using the mean field theory. The high-temperature series expansions of the magnetic susceptibility with the magnetic moments of Mn in MnF2(m Mn) are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Griffel, M., Stout, J.W.: J. Otem Phys. 18, 1455 (1950)

    ADS  Google Scholar 

  2. Stout, J.W., Matarrese, L.M.: Rev. Mod. Phys. 25, 338 (1953)

    Article  ADS  Google Scholar 

  3. Yoshida, K.: Prog. Theor. Phys. 6, 691 (1951)

    Article  ADS  Google Scholar 

  4. Keffer, F.: Phys. Rev. 88, 608 (1952)

    Article  ADS  Google Scholar 

  5. De Renzi, R., Guidi, G., Tedeschi, P., Bucci, C., Cox, S.F.J.: preceding paper. Phys. Rev. B. 30, 186 (1984)

    Article  ADS  Google Scholar 

  6. Boroyik-Romanoy, A.S., Krelnes, N.M., Pankoy, A.A., Talalaey, M.A.: Sov. Phys.JETP. 37, 890 (1973)

    ADS  Google Scholar 

  7. Pisarev, R.V., Sinir, G., Smolenskir, G.A.: ZhETFPis Red. 9(112) (1969). [JETP Lett. 9 64 (1969)]

  8. Mikhanov, N.N., Petrov Kristallografiya, S.Y.: vol. 11. [Sov. Phys.-Crystallogr. 11 390 (1966)] (1966)

  9. Strempfer, J., Rutt, U., Jauch, W.: Phys. Rev. Lett. 86, 3152 (2001)

    Article  ADS  Google Scholar 

  10. Strempfer, J., Rütt, U., Bayrakci, S.P., Bruckel, Th., Jauch, W.: Phys. Rev. B. 69, 014417 (2004)

    Article  ADS  Google Scholar 

  11. Strempfer, J., Brückel, Th., Hupfeld, D., Schneider, J.R., Liss, K.-D., Tschentscher, Th.: Europhys. Lett. 40, 569 (1997)

    Article  ADS  Google Scholar 

  12. Hamdad, N., Rozale, H., Lakdja, A., Chahed, A., Benhelal, O.: Superlat. Microstr. 63, 182 (2013)

    Article  ADS  Google Scholar 

  13. Rudolf, T., Kant, C., Mayr, F., Loidl, A.: Phys. Rev. B. 77, 024421 (2008)

    Article  ADS  Google Scholar 

  14. Kant, C., Rudolf, T., Schrettle, F., Mayr, F., Deisenhofer, J., Lunkenheimer, P., Eremin, M.V., Loidl, A.: Phys. Rev. B. 78, 245103 (2008)

    Article  ADS  Google Scholar 

  15. Baker, G.A., Graves-Morris, P. (eds.): Padé Approximants. Addison-Wesley, London (1981)

    Google Scholar 

  16. Blaha, P., Schwartz, K., Madsen, G.K.H., Kvasnicka, D., Luitz, J.: WIEN2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Austria (2001). ISBN 3-9501031-1-2

    Google Scholar 

  17. Jauch, W., Mcintre, G.J., Schultz, A.J.: Acta. Cryst. B 46, 739 (1990)

    Article  Google Scholar 

  18. Holland, W.E., Brown, H.A.: Phys-Stat. Sol 10(a), 249 (1972)

    Article  ADS  Google Scholar 

  19. Moron, M.C.: J. Phys: Condens. Matter. 8, 11141 (1996)

    ADS  Google Scholar 

  20. Stanley, H.E., Kaplan, T.A.: Phys. Rev. Lett. 16, 981 (1966)

    Article  MathSciNet  ADS  Google Scholar 

  21. Okazaki, A., Turberfield, K.C., Stevenson, R.W.H.: Phys. Letters. 8, 9 (1964)

    Article  ADS  Google Scholar 

  22. Katsumata, K.: J. Phys. Condens. Matter 12, R589 (2000)

    Article  ADS  Google Scholar 

  23. Schleck, R., Nahas, Y., Lobo, R.P.S.M., Varignon, J., Lepetit, M. B., Nelson, C.S., Moreira, R.L.: B 82, 054412 (2010)

    Google Scholar 

  24. Nizhankovskii, V.I.: J. Magn. Magn. Mater., 928 (2002)

  25. Nordblad, P., Lundgren, L., Figueroa, E., Beckman, O.: J. Magn. Magn. Mater. 23, 333 (1981)

    Article  ADS  Google Scholar 

  26. Sardar, S., Chakraborty, K.G.: Physica A. 238, 317 (1997)

    Article  ADS  Google Scholar 

  27. Van Dyke, J.P., Camp, W.J.: Phys. Rev. B9, 3121 (1974)

    Article  ADS  Google Scholar 

  28. Griffiths, R.B.: Phys. Rev. 158, 557 (1967)

    Article  Google Scholar 

  29. Strempfer, J., Bruckel, Th., Rutt, U., Schneider, J.R., Liss, K.-D, Tschentscher, Th.: Acta Crystallogr., Sect. A: Found Crystallogr. 52, 438 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Masrour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masrour, R., Hlil, E.K., Hamedoun, M. et al. New Theoretical Investigation on the Electronic Structure and Magnetic Interaction for Fluorides MnF2 . J Supercond Nov Magn 28, 3045–3048 (2015). https://doi.org/10.1007/s10948-015-3125-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10948-015-3125-3

Keywords

Navigation